1,848 research outputs found

    Neural activity in the visual thalamus reflects perceptual suppression

    Get PDF
    To examine the role of the visual thalamus in perception, we recorded neural activity in the lateral geniculate nucleus (LGN) and pulvinar of 2 macaque monkeys during a visual illusion that induced the intermittent perceptual suppression of a bright luminance patch. Neural responses were sorted on the basis of the trial-to-trial visibility of the stimulus, as reported by the animals. We found that neurons in the dorsal and ventral pulvinar, but not the LGN, showed changes in spiking rate according to stimulus visibility. Passive viewing control sessions showed such modulation to be independent of the monkeys' active report. Perceptual suppression was also accompanied by a marked drop in low-frequency power (9–30 Hz) of the local field potential (LFP) throughout the visual thalamus, but this modulation was not observed during passive viewing. Our findings demonstrate that visual responses of pulvinar neurons reflect the perceptual awareness of a stimulus, while those of LGN neurons do not

    Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation

    Get PDF
    It has been suggested that the basal forebrain (BF) exerts strong influences on the formation of memory and behavior. However, what information is used for the memory-behavior formation is unclear. We found that a population of neurons in the medial BF (medial septum and diagonal band of Broca) of macaque monkeys encodes a unique combination of information: reward uncertainty, expected reward value, anticipation of punishment, and unexpected reward and punishment. The results were obtained while the monkeys were expecting (often with uncertainty) a rewarding or punishing outcome during a Pavlovian procedure, or unexpectedly received an outcome outside the procedure. In vivo anterograde tracing using manganese-enhanced MRI suggested that the major recipient of these signals is the intermediate hippocampal formation. Based on these findings, we hypothesize that the medial BF identifies various contexts and outcomes that are critical for memory processing in the hippocampal formation

    Perceptual memory drives learning of retinotopic biases for bistable stimuli.

    Get PDF
    The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased toward one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming) or through intermittent presentations of the ambiguous stimulus (stabilization). Similarly, prior presentations of unambiguous stimuli can be used to explicitly "train" a long-lasting association between a percept and a retinal location (perceptual association). These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to 40 min, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of 5 min, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain's tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual organization

    The timecourse of higher-level face aftereffects

    Get PDF
    AbstractPerceptual aftereffects for simple visual attributes processed early in the cortical hierarchy increase logarithmically with adapting duration and decay exponentially with test duration. This classic timecourse has been reported recently for a face identity aftereffect [Leopold, D. A., Rhodes, G., Müller, K.-M., & Jeffery, L. (2005). The dynamics of visual adaptation to faces. Proceedings of the Royal Society of London, Series B, 272, 897–904], suggesting that the dynamics of visual adaptation may be similar throughout the visual system. An alternative interpretation, however, is that the classic timecourse is a flow-on effect of adaptation of a low-level, retinotopic component of the face identity aftereffect. Here, we examined the timecourse of the higher-level (size-invariant) components of two face aftereffects, the face identity aftereffect and the figural face aftereffect. Both showed the classic pattern of logarithmic build-up and exponential decay. These results indicate that the classic timecourse of face aftereffects is not a flow-on effect of low-level retinotopic adaptation, and support the hypothesis that dynamics of visual adaptation are similar at higher and lower levels of the cortical visual hierarchy. They also reinforce the perceptual nature of face aftereffects, ruling out demand characteristics and other post-perceptual factors as plausible accounts

    Dissociable Perceptual Effects of Visual Adaptation

    Get PDF
    Neurons in the visual cortex are responsive to the presentation of oriented and curved line segments, which are thought to act as primitives for the visual processing of shapes and objects. Prolonged adaptation to such stimuli gives rise to two related perceptual effects: a slow change in the appearance of the adapting stimulus (perceptual drift), and the distortion of subsequently presented test stimuli (adaptational aftereffects). Here we used a psychophysical nulling technique to dissociate and quantify these two classical observations in order to examine their underlying mechanisms and their relationship to one another. In agreement with previous work, we found that during adaptation horizontal and vertical straight lines serve as attractors for perceived orientation and curvature. However, the rate of perceptual drift for different stimuli was not predictive of the corresponding aftereffect magnitudes, indicating that the two perceptual effects are governed by distinct neural processes. Finally, the rate of perceptual drift for curved line segments did not depend on the spatial scale of the stimulus, suggesting that its mechanisms lie outside strictly retinotopic processing stages. These findings provide new evidence that the visual system relies on statistically salient intrinsic reference stimuli for the processing of visual patterns, and point to perceptual drift as an experimental window for studying the mechanisms of visual perception

    Long-Term Stability of Visual Pattern Selective Responses of Monkey Temporal Lobe Neurons

    Get PDF
    Many neurons in primate inferotemporal (IT) cortex respond selectively to complex, often meaningful, stimuli such as faces and objects. An important unanswered question is whether such response selectivity, which is thought to arise from experience-dependent plasticity, is maintained from day to day, or whether the roles of individual cells are continually reassigned based on the diet of natural vision. We addressed this question using microwire electrodes that were chronically implanted in the temporal lobe of two monkeys, often allowing us to monitor activity of individual neurons across days. We found that neurons maintained their selectivity in both response magnitude and patterns of spike timing across a large set of visual images throughout periods of stable signal isolation from the same cell that sometimes exceeded two weeks. These results indicate that stimulus-selectivity of responses in IT is stable across days and weeks of visual experience

    Pulvinar Inactivation Disrupts Selection of Movement Plans

    Get PDF
    The coordinated movement of the eyes and hands under visual guidance is an essential part of goal-directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here, we used reversible inactivation to investigate the role of the dorsal pulvinar in the selection and execution of visually guided manual and saccadic eye movements in macaque monkeys. We found that unilateral pulvinar inactivation resulted in a spatial neglect syndrome accompanied by visuomotor deficits including optic ataxia during visually guided limb movements. Monkeys were severely disrupted in their visually guided behavior regarding space contralateral to the side of the injection in several domains, including the following: (1) target selection in both manual and oculomotor tasks, (2) limb usage in a manual retrieval task, and (3) spontaneous visual exploration. In addition, saccades into the ipsilesional field had abnormally short latencies and tended to overshoot their mark. None of the deficits could be explained by a visual field defect or primary motor deficit. These findings highlight the importance of the dorsal aspect of the pulvinar nucleus as a critical hub for spatial attention and selection of visually guided actions

    Lesions to right posterior parietal cortex impair visual depth perception from disparity but not motion cues.

    Get PDF
    The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations.This article is part of the themed issue 'Vision in our three-dimensional world'.This research was supported by a Wellcome Trust-NIH PhD studentship (WT091467MA) to A.P.M., a Wellcome Trust Fellowship (095183/Z/10/Z) to A.E.W., and grants from the MRC and the Stroke Association to G.W.H. D.A.L. and A.P.M. are supported by the Intramural program of the National Institutes of Healt
    corecore