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Behavioral/Cognitive

Neurons in the Primate Medial Basal Forebrain Signal
Combined Information about Reward Uncertainty, Value,
and Punishment Anticipation

Ilya E. Monosov,1,3 X David A. Leopold,2,4 and X Okihide Hikosaka3

1Department of Anatomy and Neurobiology, Washington University, School of Medicine, St. Louis, Missouri 63110, 2Section on Cognitive Neurophysiology
and Imaging, National Institute of Mental Health, Bethesda, Maryland 20892, 3Laboratory of Sensorimotor Research, National Eye Institute, Bethesda,
Maryland, 20892, and 4Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke,
National Eye Institute, Bethesda, Maryland 20892

It has been suggested that the basal forebrain (BF) exerts strong influences on the formation of memory and behavior. However, what
information is used for the memory-behavior formation is unclear. We found that a population of neurons in the medial BF (medial
septum and diagonal band of Broca) of macaque monkeys encodes a unique combination of information: reward uncertainty, expected
reward value, anticipation of punishment, and unexpected reward and punishment. The results were obtained while the monkeys were
expecting (often with uncertainty) a rewarding or punishing outcome during a Pavlovian procedure, or unexpectedly received an out-
come outside the procedure. In vivo anterograde tracing using manganese-enhanced MRI suggested that the major recipient of these
signals is the intermediate hippocampal formation. Based on these findings, we hypothesize that the medial BF identifies various contexts
and outcomes that are critical for memory processing in the hippocampal formation.
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Introduction
The basal forebrain (BF) is thought to be a key brain area for the
control of cognitive functions, such as learning and memory
(Mesulam et al., 1983; Everitt et al., 1988; Voytko, 1996; Everitt
and Robbins, 1997; Semba, 2000; Zaborszky et al., 2015). Lesions
of BF in humans produce deficits in new memory formation and
recall (Damasio et al., 1985; Morris et al., 1992; Abe et al., 1998;
Solcà et al., 2015), and the severity of mnemonic symptoms in
Alzheimer’s patients is often related to BF degeneration (White-
house et al., 1982; Kesner, 1988).

Animal studies further support the wide role of the BF in the
control of computational resources for a range of cognitive func-
tions, such as perception, attention, learning, and memory (Berry
and Thompson, 1979; Ridley et al., 1989; Muir et al., 1993; Has-
selmo et al., 1996; Voytko, 1996; Everitt and Robbins, 1997; Rid-
ley et al., 1999a, b; Savage et al., 2007; Baxter and Bucci, 2013) and
single out the medial regions of the BF (mBF) as particularly

important for many kinds of new learning and long-term mem-
ory formation. mBF lesions have been found to impede classical
aversive learning (Berry and Thompson, 1979) and have also
been shown to influence associative memory formation (Has-
selmo et al., 1996; Everitt and Robbins, 1997). However, what
types of information mBF neurons send to its target structures to
modulate learning and memory is unknown.

Learning and memory are known to be disproportionally
shaped by surprising events or uncertain contexts (Pearce and
Hall, 1980; Yu and Dayan, 2005; Courville et al., 2006; Esber and
Haselgrove, 2011; Le Pelley et al., 2011; Bach and Dolan, 2012;
Ogawa et al., 2013), as well as by other factors, such as the expec-
tation of a reward or the fear of an aversive stimulus (Eccleston
and Crombez, 1999; Bromberg-Martin et al., 2010; McNally et
al., 2011; Moore et al., 2012; Anderson, 2013; Wiech and Tracey,
2013). We therefore recorded activity of single mBF neurons
while monkeys experienced contexts known to activate and mod-
ulate a wide range of learning and memory functions. We found
that a population of neurons in the mBF combined information
about uncertainty, reward size, punishment, and surprise. We
also found that the region of the mBF where these neurons were
clustered projects to the hippocampal formation (HF). Based on
these findings, we propose a mechanism through which the mBF
may control learning and memory functions of the HF.

Materials and Methods
General procedures. Five adult male rhesus monkeys (Macaca mulatta)
were used for the experiments (Monkeys H, P, T, Sm, and S). All proce-
dures for animal care and experimentation were approved by the Animal
Care and Use Committee of the National Eye Institute and complied with

Received Jan. 5, 2015; revised March 9, 2015; accepted March 31, 2015.
Author contributions: I.E.M. designed research; I.E.M. performed research; I.E.M. analyzed data; I.E.M., D.A.L.,

and O.H. wrote the paper.
This work was supported by the National Eye Institute intramural research program and the Department of

Anatomy and Neurobiology, Washington University School of Medicine to I.E.M. We thank E. Bromberg-Martin, B.
Cumming, P. Daye, A. Ghazizadeh, J. Herman, H. Kim, R. Krauzlis, L. Optican, R. Wurtz, and M. Yasuda for valuable
scientific discussions; F. Ye and C. Zhu for excellent MRI services; M. Smith for histological expertise and service; and
A. Hays, J. McClurkin, B. Nagy, N. Nichols, D. Parker, and T. Ruffner for technical support.

The authors declare no competing financial interests.
Correspondence should be addressed to Dr. Ilya E. Monosov, Department of Anatomy and Neurobiology, Wash-

ington University, School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110. E-mail: ilya.monosov@gmail.com.
DOI:10.1523/JNEUROSCI.0051-15.2015

Copyright © 2015 the authors 0270-6474/15/357443-17$15.00/0

The Journal of Neuroscience, May 13, 2015 • 35(19):7443–7459 • 7443



the Public Health Service Policy on the humane care and use of labora-
tory animals. A plastic head holder and plastic recording chamber were
fixed to the skull under general anesthesia and sterile surgical conditions.
The chambers were tilted laterally by 35° and aimed at the ventromedial
prefrontal cortex and the anterior portion of the caudate nucleus. Two
search coils were surgically placed under the conjunctiva of the eyes.
After the monkeys recovered from surgery, they were conditioned using
Pavlovian procedures (Experiments 1–5). During the Pavlovian proce-
dures, we recorded the activity of single neurons in the basal forebrain–
septum complex.

Neuronal recording. While the monkey was participating in the task, we
recorded the activity of single neurons in the septum and the diagonal
band of Broca. The recording sites were determined with 1 mm spacing
grid system, with the aid of MR images (4.7T, Bruker) obtained along the
direction of the recording chamber. This MRI-based estimation of neu-
ron recording locations was aided by custom software (Daye et al., 2013).

Single-unit recording was performed using epoxy-coated electrodes
(FHC). The electrode was inserted into the brain through a stainless-steel
guide tube and advanced by an oil-driven micromanipulator (MO-97A,
Narishige). The electric signal from the electrode was amplified with a
bandpass filter (200 Hz-10 kHz; BAK). Neuronal spikes were isolated
on-line using a custom voltage-time window discrimination software
(MEX, LSR/NEI/NIH).

Histological procedure. After the end of some recording sessions, we
made electrolytic microlesions at the recording sites (15 �A and 30 s) in
which we encountered typical Type 2 neurons in the mBF. After the
conclusion of experiments, the monkey was deeply anesthetized using
sodium pentobarbital and perfused with 10% formaldehyde. The brain
was blocked and equilibrated with 10% sucrose. Frozen sections were cut
every 50 �m in the coronal plane. The sections were stained with
cresyl-violet.

Data processing and statistics. Spike-density functions were generated
by convolving spike-times with a Gaussian filter (� � 50 ms). The con-
ditioned stimulus (CS) neuronal responses were measured during a win-
dow of 150 ms after CS presentation until the end of the CS epoch. To
normalize task-event related responses (Experiments 2–5), we subtracted
baseline activity (last second of the intertrial interval) from the activity

during the task-event related measurement epoch. All statistical tests
were two-tailed. For comparisons between two task conditions for each
neuron, we used rank-sum test, unless otherwise noted. For comparisons
between two task conditions across the population average we used a
paired signed-rank test, unless otherwise noted.

Experiment 1: appetitive and aversive Pavlovian procedure. For this ex-
periment, we recorded widely in the septal-basal forebrain complex in
Monkeys P and Sm. To confirm our results in Monkeys P and Sm, we
included data from two additional monkeys (T and S) used in a previous
study (Monosov and Hikosaka, 2013).

The procedure consisted of two alternating blocks: appetitive and
aversive blocks (Fig. 1). In the appetitive block, each of three CSs were
followed by an unconditioned stimulus (US) (apple juice), with 100%,
50%, and 0% chance, respectively. In the aversive block, three CSs were
followed by an airpuff US directed at the monkey’s face with 100%, 50%,
and 0% chance, respectively. The 0.4 ml of apple juice was delivered
through a spout that was positioned in front of the monkey’s mouth.
Airpuff (�35 psi) was delivered through a narrow tube placed 6 – 8 cm
from the monkey’s face.

Each trial started with the presentation of a trial-start cue (white
circle) at the center of the screen. After 1 s, the trial-start cue disap-
peared and one of the three CSs was presented pseudorandomly at the
center. After 1.5 s, the CS disappeared, and the US (if scheduled for
that trial) was delivered. The monkeys were not required to fixate the
trial-start cue or CS. For Monkeys P and Sm, one block consisted of
12 trials with fixed proportions of trial types (100%, 4 trials; 50%, 4
trials; 0%, 4 trials), and the intertrial intervals (ITIs) ranged from 3 to
8 s. For Monkeys S and T, one block consisted of 22 trials, and the ITIs
ranged from 5 to 10 s.

Neuron’s uncertainty-preference was defined in Experiment 1 if its
responses varied across the three CSs in either appetitive or aversive block
(Kruskal–Wallis test, p � 0.05) and if its response to the uncertain CS
(50%) was significantly stronger than its responses to both of the certain
CSs (100% and 0%) ( post hoc test: two-tailed rank-sum test; p � 0.01).
To assess the heterogeneity of uncertainty sensitive neurons, we per-
formed principal component analysis Figure 2). To quantify whether a
neuron had a significant airpuff response, we compared the activity in a

Figure 1. Responses of Type 2 neurons in the mBF to predictions about rewards and punishments. A, Monkeys experienced two distinct blocks: an appetitive block in which three visual CSs
predicted juice (US) with 100%, 50%, and 0% chance, and an aversive block in which three cues predicted airpuff (US) with 100%, 50%, and 0% chance. TS, Trial start cue. B, Responses of a single
Type 2 neuron in two blocks. Its spike activity is shown by raster plots (top) and spike density function (bottom). Dark blue raster plots indicate the activity in 50% CS trials in which US was omitted.
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50 ms time window starting from 20 ms after airpuff delivery (or omis-
sion) with the activity in a 50 ms time window before airpuff delivery or
omission.

For each neuron, the presence of ramping (Fig. 3D) was assessed with
a correlation of neuronal activity (sampled every 100 ms) and time dur-
ing the last 1 s of the CS period. Ramping activity was considered present
if the correlation was positive and significant. The statistical significance
of the correlation ( p � 0.05) was tested using a permutation test (null
hypothesis: neuronal activity was independent of time) by shuffling the
neural firing rates across the time bins 2000 times. The slope of the
anticipatory ramping activity was defined as the slope of the regression
line fit to these data.

The intrinsic firing characteristics of Type 2 neurons were defined as
firing irregularity, autocorrelation width, and firing rate (Fig. 4). To
quantify irregularity of spiking activity, we used the irregularity index
(IR) developed by Davies et al. (Davies et al., 2006; Nakamura et al., 2008;
Matsumoto and Hikosaka, 2009).This measurement does not require
constant firing during the measurement period and is therefore useful for
analyzing neurons with different firing properties. To verify our IR-based
result, we also quantified spike rate variance, defined as the SD of inter-
trial intervals (ISIs) during the same baseline window. Neuronal bursti-
ness was assessed during the same baseline window for each neuron using
two measures previously used to study hippocampal burst neurons (Vis-
kontas et al., 2007): (1) the width of spike autocorrelation (computed in

1 ms bins) defined as the first time (lag) the autocorrelation reached its
mean point; and (2) the ratio of the number of ISIs �10 ms and the
number of ISIs �10 ms.

Experiment 2: unexpected reward and punishment delivery. The proce-
dure was the same as in Experiment 1, except that uncued trials were
included in which a juice reward alone or an airpuff alone was deliv-
ered unexpectedly during some of the ITIs. These unexpected out-
comes were included during 20% of the ITIs, which were chosen
randomly. When the outcome was delivered, it occurred between
�1.3 and 3 s after the end of the previous trial. Monkeys H and P
participated in this experiment.

To compare the average reward or punishment responses after 50%
CSs with average responses for the same outcomes delivered during the
ITI (Fig. 5C,E), a paired signed rank test was performed comparing the
activity in a 150 ms window after outcome delivery. To calculate and
display the outcome response after the 50% CSs, the activity during 50%
trials in which the outcome was not delivered was subtracted from 50%
trials in which the outcome was delivered. To calculate and display the
outcome response activity during the ITI, average baseline was
subtracted.

Experiment 3: reward probability and reward amount Pavlovian proce-
dure. The procedure consisted of two blocks: a reward probability block
and a reward amount block (Fig. 6). Monkeys H and P participated in
this experiment.

Figure 2. Clustering of two groups of reward uncertainty-sensitive neurons. A, The CS epoch activity for 70 uncertainty selective neurons during the appetitive/aversive procedure. Each trace
represents the average activity of a single neuron during the 6 CS epochs. We normalized each trace by dividing each of these 6 CS responses by the maximum CS response. PCA was performed on
those normalized response functions. Orange and red traces represent the two clusters of neurons (Type 1 and Type 2) that resulted from the PCA analysis (shown in B, C). B, PCA performed on the
single neuron functions in A revealed that the majority of the variance in the 70 neurons’ CS activations can be explained by the first principal component (PC1). To assess this, we shuffled normalized
activity across the 0% juice, 100% juice, 0% airpuff, 50% airpuff, and 100% airpuff CSs and calculated the percentage of variance explained (PVE) by each PC. Gray error bars represent the range of
PVE for each PC based on 10,000 shuffles. C, Bimodal distribution of PC1s of the 70 uncertainty neurons (Hartigan’s Dip Test, p � 0.01, tested by 10,000 permutations). Based on the PC1s, k-means
clustering separated the neurons into two groups: orange represents Type 1; red represents Type 2. Their average firing is shown in D for the three CSs in each block (appetitive or aversive), separately.
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In the reward probability block, five CSs were followed by a liquid
reward (0.4 ml of juice) with 100%, 75%, 50%, 25%, and 0% chance,
respectively. In the reward amount block, five CSs were followed by a
liquid reward of 0.4, 0.3, 0.2, 0.1, and 0 ml, respectively. Thus, the ex-
pected values of the five CSs matched between the probability and
amount blocks. Each trial started with the presentation of a trial-start cue
at the center. The trial-start cue was a purple square in the probability
block and a yellow square in the amount block. The monkeys had to
maintain fixation on the trial-start cue for 1 s; then the trial-start cue
disappeared and one of the five CSs was presented pseudorandomly.
After 1.5 s, the CS disappeared, and juice (if scheduled for that trial) was
delivered. The monkeys were not required to fixate the CSs. In each trial,
the CS could appear in three locations: 10 degrees to the left or to the right
of the trial-start cue, or in the center. One block consisted of 40 trials with
fixed proportions of trial types (each of the five CSs appears eight times
each block).

In a separate experimental session, we tested the monkeys’ choice
preference for the CSs (Fig. 7). The preference was tested in three ways:
among the probabilistic CSs, among the amount CSs, and across the
probabilistic and amount CSs. Monkeys H and P participated in this
experiment. Each trial started with the presentation of the trial-start cue
at the center, and the monkeys had to fixate it for 1 s. Then two CSs
appeared,10 degrees to the left and right. The monkey had to make a
saccade to one of the two CSs within 5 s and fixate it for at least 800 ms.
Then the unchosen CS disappeared, and after �750 ms the outcome
(associated with the chosen CS) was delivered and the chosen CS disap-
peared. If the monkey failed to fixate one of the CSs, the trial was aborted

and all stimuli disappeared. The trials were presented pseudorandomly,
so that a block of 180 trials contained all possible combinations of CSs
four times.

Experiment 4: reward variance Pavlovian procedure. The procedure
consisted of one block in which four fractals were presented as CSs (Fig.
8). Monkeys H and P participated in this procedure. The “no variance”
CS was always followed by 0.15 ml of juice. The “low variance” CS was
followed either by 0.2 or 0.1 ml of juice, with a 50% chance. The “me-
dium variance” CS was followed either by 0.25 or 0.05 ml of juice, with a
50% chance. The “high variance” CS was followed either by 0.3 ml of
juice or no juice, with a 50% chance. Thus, the four CSs had the same
expected value but different reward variances.

Each trial started with the presentation of a trial-start cue (gray square)
at the center. The monkeys had to maintain fixation on the trial-start cue
for 1 s; then the trial-start cue disappeared and one of the four CSs was
presented at the center. After 1.5 s, the CS disappeared, and juice (if
scheduled for that trial) was delivered.

In a separate experimental session, we tested the monkeys’ choice
preference for the CSs (Fig. 9). Monkeys H and P participated in this task.
The details are the same as in the choice procedure used in Experiment 3
(above).

Experiment 5: reward probability Pavlovian procedure with novel stim-
uli. The procedure was the same as the appetitive block in Experiment 1,
except that novel fractals were used for the CSs (Fig. 10). Also, here the
monkey (P) was expected to fixate the trial-start cue for 1 s (as in Exper-
iments 1– 4). The monkey started learning some sets of CSs (three novel
fractals for each set) in the Pavlovian procedure on consecutive days, one

Figure 3. Locations and firing properties of two groups of reward uncertainty-sensitive neurons in the septal area. A, B, Their locations are shown on MR images: left, coronal; right, parasagittal.
Yellow represents Type 1 neurons in the anterodorsal septal region (n � 31). Red represents Type 2 neurons in the mBF (n � 39). Light green represents other recorded neurons (n � 300). C,
Electrolytic marking lesions (black arrows) made at the locations of Type 2 neurons in the mBF of Monkey H. They were made along two mediolaterally adjacent electrode tracks. Along the lateral
track, we recorded four Type 2 neurons between the two marking lesions. D, A table of response properties of Type 1 and 2 neurons recorded during Experiment 1. Asterisks indicate significant
difference between Type 1 and Type 2 neurons (baseline firing rate and irregularity index; Wilcoxon rank sum test, p � 0.05; proportions of neurons displaying significant CSs ramping or airpuff
responses; see Materials and Methods; � 2 test, p � 0.05). A–C, Gray lines indicate 5 mm scale bars. A, C, The coronal sections are located �1.5 mm anterior to the center of the anterior commissure
(ac). cc, Corpus callosum; CD, caudate nucleus; DBB, diagonal band of Broca; lv, lateral ventricle; LS, lateral septum; MS, medial septum; PUT, putamen; vmPFC, ventromedial prefrontal cortex.
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session per day. On the second and third days, more sets of CSs were
added each day for the monkey’s additional learning. Neuronal record-
ing was done on the third day while the monkey was performing the
Pavlovian procedure with these sets of CSs. In other words, the mon-
key had experienced the first group of CS sets for 2 d, the second
group for 1 d, and the third group was novel. In addition, a well-
learned set of CSs was used during the neuronal recording. This
across-day procedure was done several times by introducing more
novel fractals as CSs.

Choice trials (as a block of nine trials) were regularly inserted to the
Pavlovian procedure (Fig. 11). On each trial, two of the three CSs were
chosen and presented on the right and left (see Experiment 3). The pur-
pose of the choice trials was to examine the changes in the monkey’s
behavior: choice preference, the number of saccades, and the time before
making the choice.

Experiment 6: manganese enhanced MRI tracing of mBF projections. To
test where the mBF Type 2 hotspot most strongly projects, we used
manganese-enhanced MRI tracing (MEMRI) in Monkey P (Fig. 12). The
method relies on two properties of manganese ions: (1) the manganese

ion (Mn 2�) is a calcium ion analog and is therefore taken up by neurons
and transported in an anterograde fashion; and (2) Mn 2� increases the
MR intensity of voxels (Pautler et al., 1998; Saleem et al., 2002; Simmons
et al., 2008). Therefore, by injecting Mn 2� directly in to the brain, we can
trace neuronal pathways using standard T1-weighted MRI.

To locate the injection site, we recorded neuronal activity within the
mBF before the injection and verified that the neurons there were Type 2
neurons. We used a custom-made injectrode consisting of an epoxy-
coated tungsten microelectrode for neuron recording and a silica tube for
Mn 2� injection. Before the injection, the injectrode was placed at the
region of the highest concentration of Type 2 neurons and the monkey
performed the appetitive/aversive procedure (Fig. 1A). We injected 0.2
�l of 150 mM solution of manganese chloride in to the Type 2 hotspot
within the mBF. This concentration was previously shown to be effective
and nontoxic (Simmons et al., 2008; Eschenko et al., 2010). We made the
injection in to the mBF over the duration of �20 min and waited for 15
min to retract. After this, we retracted the injectrode 0.5 mm and waited
for 15 min, after which we retracted the injectrode from the brain and
prepared the monkey for MRI.

Figure 4. Properties of Type 2 neurons in mBF. A, Activity of 39 Type 2 neurons classified by PCA analysis (Fig. 2) during 100%, 50%, and 0% predictions of rewards and punishments. For each
neuron, the activity was normalized by dividing the trial firing rate by the baseline firing rate. B, Proportion of Type 2 neurons (left column) and other mBF neurons (right column) displaying aversive
signals (row 1), airpuff response (activity after airpuff � greater than activity before airpuff; row 2), and reward magnitude signals (row 3). Proportion of neurons displaying all three types of signals
(rows 1–3) is shown in row 4. The proportion of Type 2 neurons displaying all three activity biases (64%) was significantly higher than the random combination (random combination � 12.5%
binomial test; p � 0.0.01). C–F, Baseline firing characteristics of all Type 2 neurons recorded during all experiments in this study compared with other neurons in the mBF. Bar plots represent means.
Single red dots indicate single neuron data. C, Firing irregularity indices. D, Autocorrelation width. E, Spike wave trough-to-trough duration. F, Baseline firing rate. *p � 0.05 (Wilcoxon rank sum
test). ns, Not significant.
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MR anatomical images were acquired in a 4.7 T horizontal scanner
(Bruker Biospec 47/40) using a modified driven equilibrium Fourier
transform (MDEFT). The monkey’s head was placed in the scanner in
stereotactic position. A single loop circular coil was place on top of the
animal’s head. To minimize changes in RF across scans, we attached the
MR surface coil directly to the monkey’s head holder (in the head im-
plant). The whole-brain MDEFT images were acquired in a 3D volume
with a field of view 96 � 96 � 70 mm 3, and 0.5 mm isotropic voxel size.
The read-out had an 11 ms repetition time, a 4.1 ms echo time, and a 11.6
degree flip angle. The MDEFT preparation had a 1240 ms preinversion
time, and a 960 ms postinversion time for optimized T1 contrast at 4.7 T.
Each 3D volume took 25.5 min to acquire without averaging, and 51 min
if average by two.

Three baseline preinjection scans were collected a week earlier. Postin-
jection scans were collected 24, 48, and 96 h after the injection. All scans
were obtained using the averaged 51 min acquisition. Those scans were

performed under isoflurane gas anesthesia, and 3–5 scans were collected
in each session. On the injection day, three 25 min scans were collected
1 h after the injection was finished under ketamine anesthesia to localize
the injection site.

As in previous monkey MEMRI experiments, we could not detect
manganese transport by eye 24 h after the injection (Simmons et al.,
2008). To visualize the transport, we calculated the percentage increase of
voxel intensity after the injection by comparing averaged preinjection
scan with averaged postinjection scans. Before doing this, the averaged
MRIs were processed by the Analysis of Functional NeuroImages (AFNI)
toolkit (Cox, 1996). First, the image nonuniformity was reduced (AFNI
function: 3dUniformize). Second, the images were resampled, doubling
the number of voxels (AFNI function: 3dresample). Third, the postinjec-
tion scans were aligned with the average preinjection baseline scan using
affine transforms (AFNI function: 3dAllineate). Fourth, the alignment of
postinjection scans was further refined using a nonlinear warping algo-

Figure 5. Response of single mBF Type 2 neurons to rewards and punishments. A, Activity of single Type 2 neurons during 100%, 50%, and 0% predictions of rewards and punishments (n � 14:
5 from Monkey H, 9 from Monkey P). For each neuron, the activity was normalized by dividing the trial firing rate by the baseline firing rate. B, Their average activity in the appetitive block.
Conventions are the same as in Figure 1. C, Left, Difference in activity during trials in which rewards were delivered and not delivered after the 50% CS epoch (B, red vs pink trace). Single neuron
activity (black) and average (blue) are shown. Right, Baseline-subtracted activity of the same neurons to unexpected rewards during the ITI. *p � 0.05, significant difference between the two
conditions (left vs right; paired signed rank test). D, Average activity in the aversive block. E, Left, Difference in activity during trials in which airpuffs were delivered and not delivered after the 50%
CS epoch. Right, Baseline-subtracted activity to unexpected airpuffs during the ITI. Same conventions as in C. Inset, Difference between less predicable airpuffs (after 50% CS epoch) and fully
predictable airpuff responses (after 100% CS epoch).
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rithm (AFNI function: 3dQwarp). Fifth, the averaged images (pre and
post) were smoothed with a 3D Gaussian filter (� � 0.2 mm). Last, before
calculating the percentage increase, each average scan was normalized by
dividing by the average intensity value of 5 mm 3 of cortex.

Results
Septal-basal forebrain complex contains distinct populations
of neurons sensitive to reward uncertainty (Experiment 1)
We defined the mBF as a region containing the medial septum
and the nucleus of the diagonal band of Broca. We recorded
activity of single neurons in the mBF and surrounding septal
regions while monkeys participated in a Pavlovian procedure in
which appetitive and aversive blocks were alternated (Fig. 1A). In
the appetitive block, three visual CSs predicted juice with 100%,
50%, and 0% chance. In the aversive block, three CSs predicted
airpuffs with 100%, 50%, and 0% chance. Four monkeys (Mon-
keys P, S, Sm, and T) participated in this procedure.

We found a group of neurons that showed reward uncer-
tainty-selective activity. An example is shown in Figure 1B. In the
appetitive block, the neuron displayed a monotonic increase in

firing rate during the uncertain (50% juice) CS period. The ac-
tivity was truncated in response to the outcome (i.e., delivery or
omission of juice). In contrast, the neuron showed no increase in
activity during the certain (100% and 0% juice) CS periods. The
neuron was also sensitive to the uncertain CS in the aversive
block, but not selectively. It displayed similar ramping activity
during the uncertain (50% airpuff) and certain (100% airpuff)
CS periods. The neuron also showed a phasic response to the
delivery of airpuff.

Among 370 neurons recorded in the septal-mBF complex, 70
neurons showed reward uncertainty-selective activity. To quan-
titatively test the heterogeneity among the reward uncertainty
neurons, we performed principal component analysis (PCA) us-
ing the magnitudes of the neuron’s responses to the 6 CSs in the
appetitive and aversive procedure (Fig. 2). The PCA analysis
showed that the reward uncertainty neurons were categorized
into two distinct types: Type 1 (n � 31) and Type 2 (n � 39). Type
1 and 2 neurons were different in several aspects: anatomical
locations within the septal-basal forebrain complex, the pattern

Figure 6. Differential sensitivities of mBF Type 2 neurons to reward amount and probability. A, Average activity of 31 mBF Type 2 neurons (15 in Monkey H, 16 in Monkey P) in a reward probability
block (top) and a reward amount block (bottom). In the reward amount block, five fractal CSs indicated five different amounts of juice. In the reward probability block, five other fractal CSs indicated
five different probabilities of juice. Expected values of the CSs in the two blocks were matched. TS, Trial-start cue; US, juice delivery. B, Average normalized CS responses of the same neurons for
reward probability and reward amount CSs. Right, CS responses of single neurons: probability (black), amount (gray); normalized to the maximum CS response, from 0 to 1. C, Probability-amount
difference in the activity of the mBF Type 2 neurons. The subtraction was done between a probability CS and an amount CS with an equal value. D, Normalized probability-amount CS responses. *p �
0.05 (paired sign-rank test). ns, Not significant. Error bars indicate SE.
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Figure 7. Monkeys’ choice preference between CSs associated with different reward amounts and different reward probabilities. The monkey made a choice between two CSs among
the 10 well-learned CSs (5 indicating reward amounts, 5 indicating reward probabilities) (Fig. 6). A, Choice between two reward probability CSs (left) and between two reward amount
CSs (right). Each number indicates the choice percentage of the higher value CS. B, Choice percentage of a single reward probability CS versus all the other reward probability CSs (red).
Choice percentage of a single reward amount CS versus all the other reward amount CSs (black). Data are compiled from a dataset of 3417 choice trials performed by Monkeys H and P.

Figure 8. Sensitivity of Type 2 neurons to reward variance. A, Experimental design. Four fractal CSs indicated four different levels of reward variance. Possible reward amounts are indicated with
asterisks above each fractal. The large and small reward amounts occurred equally likely. The expected value was the same across the CSs. S.D, SD of reward amount. B, Average activity of 29 mBF
Type 2 neurons (16 in Monkey H, 13 in Monkey P), shown separately for each of the four fractals. C, CS responses shown individually for the 29 neurons (normalized to the maximum CS response; from
0 to 1). D, Average CS responses of the same neurons. *p � 0.05 (paired sign-rank test). Error bars indicate SE.
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of CS and US responses, background firing rates, and other elec-
trophysiological features (Fig. 3). The example neuron (Fig. 1B)
belonged to Type 2 population. Notably, we found no punishment
uncertainty neurons (i.e., respond more strongly to 50% airpuff CS
than 100% or 0% airpuff CS) in the septal-mBF complex.

We found that Type 1 and 2 neurons were located largely
separately in the septal-mBF complex (Fig. 3). Most Type 1 neu-
rons (yellow dots) were located in the anterodorsal septum
(ADS). They correspond to a group of reward uncertainty neu-
rons reported previously (Monosov and Hikosaka, 2013). In con-
trast, most Type 2 neurons (red dots) were located in the mBF
(medial septum and diagonal band of Broca). The locations of
Type 2 neurons were confirmed histologically (Fig. 3C). A total of
five Type 2 neurons were recorded at and between the marking
lesions (arrows), which were made along two electrode tracks.
They showed very similar activity to the neuron shown in Figure
1B. All of them were located in the diagonal band of Broca. In the
rest of the manuscript, we will focus on Type 2 neurons located in
the mBF.

Characterization of Type 2 neurons in the mBF
Unlike Type 1 neurons in the ADS, single Type 2 neurons in the
mBF (hereafter called “mBF Type 2 neurons”) consistently dis-
played responses to information other than reward uncertainty.
These signals were combined in a rather unique way. This is
shown qualitatively in Figure 4A in which activity of 39 Type 2
neurons clustered by PCA analysis (Fig. 2) is superimposed. First,
in addition to the ramping activity selective for reward uncer-
tainty (50% juice CS), they showed similar ramping activity when
airpuff was expected (100% or 50%; the slopes of the ramping for
reward uncertainty and airpuff expectation were correlated
across neurons; � � 0.69; p � 0.01). Second, they were phasically
activated by airpuff. Third, in the appetitive block, their activity
tended to be higher during 100% CS than 0% CS. A majority of
reward uncertainty-sensitive neurons in the mBF (Type 2)
showed the same types of activity bias (Fig. 4A,B). In particular,
the proportion of neurons that combined the three activity biases
(64%) was significantly higher than the random combination
(random combination � 12.5% binomial test; p � 0.0.01). This
combination of activity was not present among mBF neurons
that were not sensitive to reward uncertainty (n � 211) (Fig. 4B).

These data suggest that the reward uncertainty-sensitive neurons
in the mBF comprise a group of neurons that were characterized
by the unique combination of activity.

Based on that observation, we wondered whether Type 2 neu-
rons’ intrinsic firing properties set them apart from other mBF
neurons. We found some differences (Fig. 4C–E). First, Type 2 neu-
rons had lower firing irregularity indices than other mBF neurons
(Fig. 4C; p � 0.05) and had lower variance of ISIs than other mBF
neurons (p � 0.05). Second, Type 2 neurons’ firing was less
bursty than other mBF neurons, which was shown by two mea-
surements (Viskontas et al., 2007): autocorrelation width (Fig.
4D; p � 0.05) and ISI ratio (p � 0.05; Materials and Methods).
Third, Type 2 neurons had narrower spike durations than other
mBF neurons (Fig. 4E; p � 0.05). Fourth, however, there was no
significant difference in their firing rate (Fig. 4F).

mBF Type 2 neurons signal unexpected outcomes
(Experiment 2)
In this and following experiments and analyses, we examined
how mBF Type 2 neurons signal uncertainty and value, and how
their responses change during learning. As shown before, mBF
Type 2 neurons showed strong predictive activity before an un-
certain outcome of reward but were insensitive to the outcome
(Fig. 2D, bottom).

We found, however, that mBF Type 2 neurons responded
strongly when the reward was delivered unexpectedly outside the
task context (Fig. 5). In a separate set of experiment using the
same Pavlovian procedure (Fig. 1A), we delivered juice or airpuff
(with the same amount and intensity) occasionally and randomly
during the ITIs. mBF Type 2 neurons responded phasically to
both juice and airpuff (Fig. 5C,E, right). The results indicate that
mBF Type 2 neurons signal a reward outcome only when it is
delivered unexpectedly outside the behavioral context in which
the monkey is currently engaged. The context dependency was
less selective for aversive outcomes.

mBF Type 2 neurons combine reward uncertainty and value
(Experiment 3)
While the neural selectivity for reward uncertainty was the most
pronounced aspect of Type 2 neural activity, there was an addi-
tional asymmetry in the responses to the two certain conditions.

Figure 9. Monkeys’ choice preference between CSs associated with different reward variances. The monkey made a choice between two CSs among the four well-learned CSs, indicating different
reward variances (Fig. 8). A, Choice between two reward variance CSs. B, Choice percentage of a single reward variance CS versus all the other reward variance CSs. Data are compiled from a dataset
of 4672 choice trials performed by Monkeys H and P.
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As shown in Figure 2D (bottom), the certain reward condition
(100%) gave rise to a larger response than the certain no-reward
condition (0%) (p � 0.05).

To investigate this further, we recorded Type 2 activity using a
Pavlovian procedure that contained two distinct contexts: a re-
ward probability block and a reward amount block (Fig. 6). In the
reward probability block, five CSs indicated five different proba-
bilities (0%, 25%, 50%, 75%, 100%) of 0.4 ml of juice. In the
reward amount block, five other CSs indicated five different
amounts of juice (0, 0.1, 0.2, 0.3, 0.4 ml). Thus, the expected
values (calculated as follows: amount � probability) of the CSs
were matched between the two blocks.

In the reward amount block, the activity of mBF Type 2 neu-
rons during the CS period varied with reward values, which were
represented by reward amounts (Fig. 6A, bottom). Their activity
increased nonlinearly as the value increased but nearly plateaued
at the two highest levels (Fig. 6B, gray). Thus, in the absence of
reward uncertainty, the activity of these neurons was consistently
modulated by expected value of the CS.

However, in the reward probability block, where expected
value and reward uncertainty covaried, activity reflected a com-
bination of these variables. In anticipation of the reward, neural
firing rate increased as the expected value of acquiring reward

increased, but then decreased at the highest levels where the un-
certainty went to zero (Fig. 6B, black). Overall, the activity of
mBF Type 2 neurons was higher in the reward probability block
than in the reward amount block, specifically when the CS indi-
cated reward uncertainty. As in Experiment 1, the anticipatory
increases in activity were mostly observed in response to uncer-
tain reward predictions, not changes in certain reward.

The data thus far suggest that BF Type 2 neurons encode the
combination of value and uncertainty. If so, the difference in
activity between the probability and amount blocks would show
their sensitivity to reward uncertainty. Indeed, as shown in Figure
6C, the subtracted activity grew larger monotonically during the
CS period only when reward was uncertain. It was highest when
the reward probability was 50% than 25% or 75%. Overall, the
subtracted activity during the CS period showed an inverse
U-shaped pattern (Fig. 6D), matching previous findings of Type
1 neurons in the ADS (Monosov and Hikosaka, 2013). This com-
bination of results raises the intriguing possibility that BF Type 2
neurons’ activity reflects a specific convergence of neural inputs.
Type 2 neurons may be the recipient of uncertainty-selective sig-
nal from ADS Type 1 neurons as well as a value-selective signal
from other neurons located elsewhere in the brain. A straightfor-
ward additive combination of these two signals would account

Figure 10. Changing activity of Type 2 neurons during uncertainty resolution. Left and center columns, As Monkey P experienced new sets of fractal CSs on the appetitive task (Fig. 1A, left) across
3 d (one session each day), the activity pattern of mBF Type 2 neurons changed nonuniformly in time. Before the neuronal recording, the monkey had experienced multiple sets of fractal CSs with
different degrees (e.g., 0, 1, or 2 d), which enabled the comparison of the same mBF neuron’s activity across different degrees of learning. Right column, The monkey also had experienced a set of
fractal CSs with many daily sessions (�100), which revealed the same neuron’s responses to the well-learned CSs.
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for the complex properties observed in the
Type 2 neurons, particularly because the
subtracted activity (Fig. 6C) showed no
hint of a value signal (Fig. 6A, bottom).

The stronger responses of BF Type 2
neurons to uncertain CSs might be related
to the monkey’s preference of reward un-
certainty. However, this possibility was
not supported by the following experi-
ment: We presented two CSs simultane-
ously and let the monkey choose one. The
monkey’s choice was largely guided by the
expected reward value in any of the fol-
lowing conditions: when the choice was
made between two reward probability
CSs or between two reward-size CSs
(Fig. 7).

Alternatively, the stronger responses of
BF Type 2 neurons to uncertain CSs might
be caused by their response selectivity to
visual objects. To test this possibility, we
used two sets of CSs for 11 of the 31 Type
2 neurons recorded in Experiment 3. We
found that their responses were similar for
both sets (p � 0.1), suggesting that the
responses of BF Type 2 neurons were sen-
sitive to reward uncertainty, not visual ob-
ject identity.

mBF Type 2 neurons signal reward
variance (Experiment 4)
In the probability block of Experiment 3,
changes in uncertainty were always asso-
ciated with changes in value because the
reward amount was held constant. If un-
certainty and value signals in BF Type 2
neurons have distinct origins, then those
neurons should encode the quantitative
level of uncertainty when the value is held
constant.

We tested this hypothesis using a Pav-
lovian procedure in which we varied the
variance of reward amount while the ex-
pected value remained unchanged across
all the trials (Fig. 8A). Among four CSs
used, one was a certain CS and the other
three were uncertain CSs. Each of the un-
certain CSs predicted two amounts of
juice with an equal probability (i.e., 50%).
Across the CSs, the average of the two
amounts remained the same, but the dif-
ference between the two amounts varied.

Figure 11. Time courses of neuronal and behavioral changes during uncertainty resolution. A, For each of the first, second, and
third day of training (Day 1–3), average responses of Type 2 neurons to 100%, 50%, and 0% CSs are shown at the start and end of
training (left and center columns). Their responses to well-learned CSs are shown for comparison (right column). *p�0.05. ns, Not
significant. Red square represents the first time when data for the newly learned CSs became statistically not different from data for
the well-learned CSs. B, Behavioral changes during choice trials: choice probability of the higher valued CSs (top), target acquisition
time during the choice (middle), and the number of saccades before choice (bottom). The behavioral data are shown for choice
between 100% and 50% CSs, given the slower changes in neuronal responses between 100% and 50% CSs (A). Error bars indicate
SE. C, Neuronal learning expressed as changes in differential responses between the uncertain forced single stimulus (50%) CS

4

trials and the 100% CS trials during Day 1 (first learning ses-
sion) quantified by ROC (ROCs � 0.5 indicate uncertainty se-
lectivity). Type 2 neuron selectivity is plotted in black. For
contrast, we recorded additional Type 1 ADS neurons during
the same learning task (shown in red; 3 in Monkey Sm and
5 in Monkey P). As shown in A, Type 2 neurons learned
slowly, whereas Type 1 neurons quickly displayed uncer-
tainty preference as shown previously (Monosov and Hiko-
saka, 2013, their Fig. 5).
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The difference (or variance) is often taken as a measure of risk
(Weber et al., 2004; Preuschoff and Bossaerts, 2007; Platt and
Huettel, 2008; Bach and Dolan, 2012).

We found that BF Type 2 neurons encoded reward variance
(or risk) (Fig. 8B–D). Their average activity increased monoton-
ically during the trial-start cue and CS period until the resolution
of uncertainty (Fig. 8B). Importantly, the increase in activity dur-
ing the CS period was higher when the reward variance was
higher (Fig. 8D). This tendency was common among 29 BF neu-
rons tested (Fig. 8C).

Unlike Experiment 3, all the CSs were associated with the
same expected reward value, but with different levels of reward
variance. When we presented two of the four CSs (Fig. 8A) simul-
taneously, the monkeys tended to choose the higher-variance
(i.e., riskier) CS (Fig. 9). The result confirmed previous findings
(McCoy and Platt, 2005; Platt and Huettel, 2008; O’Neill and
Schultz, 2010; So and Stuphorn, 2010).

mBF Type 2 neurons slowly acquire reward uncertainty signal
(Experiment 5)
Experiments 1– 4 were performed after the monkeys had learned
the meanings of all CSs: the associated values and the degree of
uncertainty. However, when the monkeys experienced the CSs
for the first time, the meaning of each CS was unknown. How
do BF Type 2 neurons acquire their sensitivity to value and
uncertainty?

To answer this question, we tested the same type of neurons
(i.e., Type 2) across daily sessions using CSs with different degrees
of learning (Fig. 10). The task was the same as used in Experiment
1 but included only the appetitive block. In each session, we used
three sets of objects as CSs: (1) a new set of objects, (2) a not
well-learned set of objects (learned once or twice), and (3) a
well-learned set of objects (learned � 1 month).

In response to new CSs (Fig. 10, Day 1, left), these Type 2
neurons increased their activity monotonically for all CSs until

Figure 12. Transport of manganese chloride to the HF. A, The location of the injection site is visualized as a bright spot on sagittal (two images on the left) and coronal (right) MR images. Type
2 neurons recorded in the same monkey (classified by PCA analysis in Fig. 2) are shown in red (A, left). The 95% confidence ellipse around the neurons is shown in yellow. The same image is also shown
without the neurons to observe the injection site within the confidence ellipse. White lines indicate 5 mm. CD, Caudate nucleus; PUT, putamen; vmPF, ventromedial prefrontal cortex. B, Percentage
increase of voxel intensity (“MEMRI labeling”) shown in a parasagittal plane 24 h (B) and 96 h (C) after the manganese chloride injection. aHF, Anterior HF; pHF, posterior HF. D–F, MEMRI labeling
shown in a coronal plane 24 h (E) and 96 h (F) after the injection. The coronal plane is focused on the HF whose structure is shown in D. CA fields are indicated within the hippocampus. TF,
Parahippocampal cortical area TF. B, White line indicates 10 mm. D, White line indicates 5 mm. B, Red line indicates the location of the coronal plane shown in D–F.
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the delivery of an outcome (i.e., juice or no juice). Their re-
sponses changed by the end of the 1 day learning session (Fig.
10, Day 1, middle): the 0% CS elicited a strong suppression
( p � 0.05). Thus, after 1 d learning, the response to the 0% CS
reached the level of the well-learned response (Fig. 11A, bot-
tom row). In contrast, their responses to the 100% and 50% CS
remained unchanged (Figs. 10, 11A, top and middle rows).
This response pattern was similar to their value-coding (Fig.
6A, bottom), except that their activity ramped up toward the
US for all CSs.

It took �2 days for the neurons to develop their uncer-
tainty selectivity (Fig. 10, middle row). This occurred as the BF
Type 2 neurons decreased their responses to 100% CS, so that
the responses to 50% CS became larger than both the re-
sponses to 0% CS and 100% CS ( p � 0.05; paired signed rank
test). By the end of the 2 day learning session, their responses
to all CSs were not significantly different from their responses
to well-learned CSs (Fig. 11A, center column). However, the
responses to 100% CS appeared less suppressed even after the
2 day or 3 day learning session than after the long-term learn-
ing. In summary, the slow time course of uncertainty selectiv-
ity was due to a gradual decrease in the magnitude of the 100%
CS responses.

How might the changes in the activity of BF Type 2 neurons
be related to the monkey’s behavior? To investigate this issue,
after every 12 single CS trials, the monkey experienced nine
choice trials. During these trials, the monkey chose one CS
among two by fixating it for 800 ms. The monkey was free to
look around at the CSs before making his choice for up to 5 s.
The details of this procedure are explained in Materials and
Methods.

By the end of the 1 day learning session, the monkeys already
chose the higher-valued CS on most trials, as they do for the
well-learned CSs (Fig. 11B, left column, top). Correspondingly,
BF Type 2 neurons appeared to have acquired value signals by the
end of the 1 day learning session (see above). With further learn-
ing, however, the monkey’s behavior continued to change: deci-
sion speed became faster. This was shown as a continued decrease
in the target acquisition time and the number of saccades made
before the target acquisition (Fig. 11B, middle and bottom
rows). Only by the end of the 2 day learning session, these
values became indistinguishable from those for well-learned
CSs. These data suggest that: (1) long-term learning is re-
quired for the ramping activity of BF Type 2 neurons to be
tuned to the uncertainty of reward outcome; and (2) this pro-
cess might be related to the monkey’s confidence or skill to
choose high-valued objects.

It is noteworthy that the reward uncertainty activity devel-
oped at different speeds between Type 2 neurons in the mBF and
Type 1 neurons in the ADS (Fig. 11C). Unlike Type 2 neurons,
Type 1 neurons developed uncertainty selectivity within one ses-
sion on the first day of learning, as we previously showed (Mono-
sov and Hikosaka, 2013). The data provide another distinct
feature between Type 1 and Type 2 neurons.

Type 2 hotspot projects to the intermediate HF (Experiment 6)
The function of mBF Type 2 neurons depends on where their
signals are sent via anatomical projections. To address this issue
for the population of mBF neurons we recorded, we used
MEMRI. As manganese is taken up and transported antero-
gradely by neurons and is also visible in MRI scans, this method
allows for in vivo tracing of neuronal connections in monkeys
(Saleem et al., 2002; Simmons et al., 2008) and then allows the

subject to continue to participate in tasks/experiments after
the tracing procedure is completed. Using electrophysiologi-
cally guided positioning of an injection cannula, we intro-
duced manganese chloride solution (MnCl2, 0.2 �l, 150 mM)
into the mBF area in which we found many Type 2 neurons
(Fig. 12A). This can be qualitatively observed by comparing
Figure 12A with Figure 3. To quantitatively verify this obser-
vation, we also generated a 95% confidence ellipse in MRI
space from the locations of the Type 2 neurons recorded in the
same monkey (Fig. 12A) and confirmed that the injection was
within this ellipse (Fig. 12B).

We subsequently acquired a series of high-resolution MRI
scans across a period of �100 h to visualize how manganese was
transported (Materials and Methods).

Twenty-four hours after the injection, we found MEMRI
labeling most prominently in the intermediate region of the
ipsilateral HF (Fig. 12 B, E), including the hippocampus and
medial temporal cortices. The signal continued to increase
over the course of days (Fig. 12C,F ). The contralateral HF was
also labeled similarly but more weakly (data not shown). No
obvious labeling was found in other brain areas. These exper-
iments suggest the possibility that the signals of mBF Type 2
neurons are transmitted to the HF, especially in its intermedi-
ate region.

Discussion
Within the mBF in the macaque monkey, a group of neurons
encoding reward uncertainty (Type 2 neurons) also signaled a
number of other internal variables related to motivation and ex-
pectancy (Fig. 4B). These responses occurred in two contexts:
before or after an outcome. First, the preoutcome responses oc-
curred when the monkey was engaged in a task, reflecting the
monkey’s prediction. The reward uncertainty response appeared
as a monotonic increase in activity that was rapidly truncated
after the outcome (reward or no reward). A similar monotonic
increase of activity occurred when the monkey anticipated a cer-
tain or uncertain punishment. The reward value response
appeared as a change in tonic firing (Fig. 6). Second, the pos-
toutcome responses occurred strongly when an outcome was
delivered unexpectedly. The unexpected nature was particu-
larly clear for the postreward response (Fig. 5). In contrast, no
postreward response occurred during task performance, even
when the reward was uncertain (Fig. 2D, bottom), a situation
that creates reward prediction error (Schultz et al., 1997; Ma-
tsumoto and Hikosaka, 2009; Bromberg-Martin et al., 2010).
Therefore, BF Type 2 neurons encode “surprise” rewards (or
strong/highly salient outcomes), but not reward prediction
error. These results indicate that single mBF Type 2 neurons
encoded a unique combination of information: reward uncer-
tainty, expected reward value, punishment prediction, sur-
prise rewards and punishments.

Our experiments suggest that the different kinds of informa-
tion encoded by BF Type 2 neurons may originate from different
sources. For example, BF Type 2 neurons combined information
about “value” (or reward size) and information about uncer-
tainty additively (Fig. 6). Also, value selectivity developed earlier
during learning than uncertainty selectivity (Fig. 10). The distinct
nature of value and uncertainty signals in BF Type 2 neurons may
provide their target areas with a signal about behavioral relevance
that is balanced between value and uncertainty and partly based
on the subject’s experience.

A likely source of the reward uncertainty signal in BF Type 2
neurons is the ADS where we found neurons that selectively en-
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coded reward uncertainty (Monosov and Hikosaka, 2013). In this
report, we classified them as Type 1 neurons, with their locations
shown in Figure 3 and their activity shown in Figure 2 (together
with Type 2 neurons). Notably, the inverse U-shaped uncertainty
coding of BF Type 2 neurons (Fig. 6D) was very similar to that of
ADS Type 1 neurons (Monosov and Hikosaka, 2013) (Fig. 3C).
The connection from ADS Type 1 neurons to BF Type 2 neurons
may be supported by some rodent anatomical studies (Meibach
and Siegel, 1977; Russchen et al., 1985; Staiger and Nürnberger,
1991). Interestingly, Type 1 neurons developed the reward un-
certainty response quickly in one learning session, whereas Type
2 neurons acquired reward uncertainty selectivity by eliminat-
ing their responses to certain CSs and did so slowly across days
(Fig. 10). Therefore, it is unlikely that the reward uncertainty
signal is directly transmitted from Type 1 to Type 2 neurons.
Instead, a connection might act as a conditioning signal for
Type 2 neurons such that their activity during the uncertain
CS (not certain CSs) was preserved. In other words, the ADS
could be, in effect, training the mBF to shape its responses
based on uncertainty.

On the other hand, the sources of the other signals in BF Type
2 neurons are unknown. One candidate may be the medial tha-
lamic nuclei (Hsu and Price, 2009), which receive dense inputs
from the ventromedial prefrontal cortex (Hsu and Price, 2007,
2009) where distinct populations of neurons tonically encode
appetitive or aversive states (Monosov and Hikosaka, 2012).
Other candidates include the brainstem serotonergic and adren-
ergic nuclei (Russchen et al., 1985; Semba et al., 1988; Vertes,
1988; España and Berridge, 2006).

What then is the function of mBF Type 2 neurons? Lesion and
brain imaging studies have linked the mBF to learning and mem-
ory functions (Damasio et al., 1985; Ridley et al., 1988, 1989,
1999a; Morris et al., 1992; Roman et al., 1993; Abe et al., 1998; De
Rosa and Hasselmo, 2000; Fujii et al., 2002; De Rosa et al., 2004;
Baxter and Bucci, 2013; Iglesias et al., 2013). Anatomically, the
mBF is shown to project to brain areas that are heavily involved in
learning and memory, including the HF and the anterior cingu-
late cortex (Mesulam et al., 1983). We thus consider the possibil-
ity that mBF Type 2 neurons serve learning and/or memory
functions.

A fundamental question is as follows: Why do mBF Type 2
neurons encode a relatively fixed combination of information
related to both rewards and punishments? Interestingly, single
mBF Type 2 neurons encoded the combination of the reward-
related and punishment-related information in a unidirectional
manner: they increased their firing rate in reward-associated and
punishment-associated contexts (Fig. 2D, bottom). Therefore,
Type 2 signals would not be suitable to guide future actions
aiming at obtaining rewards and avoiding punishments (e.g.,
through reinforcement learning). Consistent with Type 2 neu-
rons not being a source of reinforcing signals are two addi-
tional observations: (1) Type 2 neurons did not encode reward
prediction errors; and (2) they responded more strongly to
50% than 100% rewards. These data indicate that Type 2 neu-
rons could not reliably guide behavior toward rewards in un-
certain contexts.

On the other hand, the same combination of information
would be suitable for creating or modifying episodic memories as
well as for other monitoring functions (e.g., attention for learn-
ing). For instance, we remember past events more likely if they
were associated with something rewarding, punishing, or sur-
prising (Loewenstein et al., 2001; Dolcos et al., 2004a, b; Hulse et
al., 2007). Consistent with this hypothesis, MEMRI tracing

showed that the region of the mBF where Type 2 neurons were
concentrated projected to the HF, which is a key region for form-
ing and recalling episodic or abstract associative memories (Has-
selmo et al., 1996; Mishkin et al., 1997; Vargha-Khadem et al.,
1997; Doré et al., 1998; Wallenstein et al., 1998; Manns et al.,
2003; Ergorul and Eichenbaum, 2004). The HF is known to re-
ceive continuous information about the external world from ce-
rebral cortical areas and the internal state from neuromodulatory
systems, including the dopaminergic system (Lisman and Grace,
2005). The signals from the mBF could instruct the HF to take a
“snapshot” of the ongoing events and contexts when they are
rewarding, punishing, or surprising. These “snapshots” of the
world would be used as important evidence for the animal’s judg-
ment and decision making (Tulving, 2002; Eichenbaum, 2004;
Bar, 2009; Squire and Wixted, 2011; Stokes et al., 2012).

Computational models have suggested that the mBF exerts
control over learning and episodic memory in the HF (Has-
selmo et al., 1995, 1996; Myers et al., 1996). In support of these
models and our hypothesis, disruptions of the HF and mBF
can produce similar deficits in memory formation (Ridley et
al., 1988, 1989, 1999a; Morris et al., 1992; Roman et al., 1993;
Suzuki et al., 1993, 1997; Abe et al., 1998; Turchi et al., 2005,
2008).

More experiments are now necessary to further elucidate
the role of mBF Type 2 neurons in cognitive functions. Some
studies have suggested that, in certain contexts, the HF con-
tributes to the reduced attention to irrelevant events rather
than the increased attention to relevant events (Han et al.,
1995), which is different from what we proposed above (i.e.,
attention for learning). Notably, this alternative function of
the HF may be guided by cholinergic neurons in the mBF
(Chiba et al., 1995; Baxter et al., 1997; Oros et al., 2014). On
the other hand, noncholinergic mBF neurons may be respon-
sible for increasing learning and memory capacities (Dwyer et
al., 2007; Pang et al., 2011; Baxter and Bucci, 2013; Roland et
al., 2014). This consideration suggests that Type 2 neurons in
the mBF are noncholinergic. Indeed, unlike Type 2 neurons
(Fig. 4C–F ), cholinergic neurons typically have low firing
rates, wide spike durations, and display irregular firing
(Manns et al., 2000a, b; Momiyama and Zaborszky, 2006; Si-
mon et al., 2006; Hedrick and Waters, 2010; Unal et al., 2012).
However, the neurochemical profile of Type 2 neurons is un-
known. Although BF is often characterized by concentrated
groups of cholinergic neurons (Mesulam et al., 1983; Za-
borszky et al., 2008), it contains other kinds of neurons, in-
cluding GABAergic and glutamatergic neurons (Semba, 2000;
Lin et al., 2006; Zaborszky et al., 2008), all of which may
project to the HF (Everitt and Robbins, 1997; Semba, 2000;
Easton et al., 2012). Therefore, finding out whether Type 2
neurons belong to a particular neuronal group would be im-
portant to reveal the circuit mechanisms that control what to
remember and from what to learn.
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Solcà M, Di Pietro M, Schnider A, Leemann B (2015) Impairment of seman-
tic memory after basal forebrain and fornix lesion. Neurocase 21:198 –
205. CrossRef Medline

Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory
since H.M. Annu Rev Neurosci 34:259 –288. CrossRef Medline

Staiger JF, Nürnberger F (1991) The efferent connections of the lateral sep-
tal nucleus in the guinea pig: intrinsic connectivity of the septum and
projections to other telencephalic areas. Cell Tissue Res 264:415– 426.
CrossRef Medline

Stokes MG, Atherton K, Patai EZ, Nobre AC (2012) Long-term memory
prepares neural activity for perception. Proc Natl Acad Sci U S A 109:
E360 –E367. CrossRef Medline

Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the
perirhinal and parahippocampal cortices in the monkey produce long-
lasting memory impairment in the visual and tactual modalities. J Neu-
rosci 13:2430 –2451. Medline

Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the
macaque entorhinal cortex. J Neurophysiol 78:1062–1081. Medline

Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol
53:1–25. CrossRef Medline

Turchi J, Saunders RC, Mishkin M (2005) Effects of cholinergic deafferen-
tation of the rhinal cortex on visual recognition memory in monkeys.
Proc Natl Acad Sci U S A 102:2158 –2161. CrossRef Medline

Turchi J, Buffalari D, Mishkin M (2008) Double dissociation of pharmaco-
logically induced deficits in visual recognition and visual discrimination
learning. Learn Mem 15:565–568. CrossRef Medline

Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain
harbors two distinct cholinergic populations defined by their electrophys-
iology. Front Behav Neurosci 6:21. CrossRef Medline

Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W,
Mishkin M (1997) Differential effects of early hippocampal pathology
on episodic and semantic memory. Science 277:376 –380. CrossRef
Medline

Vertes RP (1988) Brainstem afferents to the basal forebrain in the rat. Neu-
roscience 24:907–935. CrossRef Medline

Viskontas IV, Ekstrom AD, Wilson CL, Fried I (2007) Characterizing interneu-

7458 • J. Neurosci., May 13, 2015 • 35(19):7443–7459 Monosov et al. • Neurons in the Primate Medial Basal Forebrain

http://dx.doi.org/10.1002/cne.902140206
http://www.ncbi.nlm.nih.gov/pubmed/6841683
http://dx.doi.org/10.1098/rstb.1997.0132
http://www.ncbi.nlm.nih.gov/pubmed/9368934
http://dx.doi.org/10.1152/jn.00507.2005
http://www.ncbi.nlm.nih.gov/pubmed/16571735
http://dx.doi.org/10.1523/JNEUROSCI.1801-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22836265
http://dx.doi.org/10.1038/nn.3398
http://www.ncbi.nlm.nih.gov/pubmed/23666181
http://dx.doi.org/10.1080/17470218.2011.626865
http://www.ncbi.nlm.nih.gov/pubmed/22136653
http://dx.doi.org/10.1093/brain/115.6.1827
http://www.ncbi.nlm.nih.gov/pubmed/1486463
http://dx.doi.org/10.1016/0166-4328(93)90128-D
http://www.ncbi.nlm.nih.gov/pubmed/7509608
http://dx.doi.org/10.1006/nlme.1996.0043
http://www.ncbi.nlm.nih.gov/pubmed/8661251
http://dx.doi.org/10.1523/JNEUROSCI.0021-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18480289
http://dx.doi.org/10.1016/j.neuron.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23352162
http://dx.doi.org/10.1016/j.neuron.2010.09.031
http://www.ncbi.nlm.nih.gov/pubmed/21092866
http://dx.doi.org/10.1101/lm.032433.113
http://www.ncbi.nlm.nih.gov/pubmed/24443744
http://dx.doi.org/10.1002/hipo.20799
http://www.ncbi.nlm.nih.gov/pubmed/20865731
http://dx.doi.org/10.1002/mrm.1910400515
http://www.ncbi.nlm.nih.gov/pubmed/9797158
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://www.ncbi.nlm.nih.gov/pubmed/7443916
http://dx.doi.org/10.1038/nn2062
http://www.ncbi.nlm.nih.gov/pubmed/18368046
http://dx.doi.org/10.1196/annals.1390.005
http://www.ncbi.nlm.nih.gov/pubmed/17344526
http://www.ncbi.nlm.nih.gov/pubmed/3137613
http://dx.doi.org/10.1016/0006-8993(89)90626-4
http://www.ncbi.nlm.nih.gov/pubmed/2510907
http://dx.doi.org/10.1016/S0006-8993(99)01641-8
http://www.ncbi.nlm.nih.gov/pubmed/10415411
http://dx.doi.org/10.1037/0735-7044.113.2.303
http://www.ncbi.nlm.nih.gov/pubmed/10357455
http://dx.doi.org/10.1523/JNEUROSCI.2352-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24403150
http://dx.doi.org/10.1037/0735-7044.107.1.72
http://www.ncbi.nlm.nih.gov/pubmed/8447959
http://dx.doi.org/10.1002/cne.902420102
http://www.ncbi.nlm.nih.gov/pubmed/3841131
http://dx.doi.org/10.1016/S0896-6273(02)00718-3
http://www.ncbi.nlm.nih.gov/pubmed/12062017
http://dx.doi.org/10.1016/j.brainres.2006.12.083
http://www.ncbi.nlm.nih.gov/pubmed/17289001
http://dx.doi.org/10.1126/science.275.5306.1593
http://www.ncbi.nlm.nih.gov/pubmed/9054347
http://dx.doi.org/10.1016/S0166-4328(00)00254-0
http://www.ncbi.nlm.nih.gov/pubmed/11000416
http://dx.doi.org/10.1002/cne.902670311
http://www.ncbi.nlm.nih.gov/pubmed/2449477
http://dx.doi.org/10.1523/JNEUROSCI.1488-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18650340
http://dx.doi.org/10.1523/JNEUROSCI.1401-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16943562
http://dx.doi.org/10.1152/jn.00430.2010
http://www.ncbi.nlm.nih.gov/pubmed/20739596
http://dx.doi.org/10.1080/13554794.2014.883270
http://www.ncbi.nlm.nih.gov/pubmed/24498851
http://dx.doi.org/10.1146/annurev-neuro-061010-113720
http://www.ncbi.nlm.nih.gov/pubmed/21456960
http://dx.doi.org/10.1007/BF00319032
http://www.ncbi.nlm.nih.gov/pubmed/1868518
http://dx.doi.org/10.1073/pnas.1108555108
http://www.ncbi.nlm.nih.gov/pubmed/22109554
http://www.ncbi.nlm.nih.gov/pubmed/8501516
http://www.ncbi.nlm.nih.gov/pubmed/9307135
http://dx.doi.org/10.1146/annurev.psych.53.100901.135114
http://www.ncbi.nlm.nih.gov/pubmed/11752477
http://dx.doi.org/10.1073/pnas.0409708102
http://www.ncbi.nlm.nih.gov/pubmed/15684066
http://dx.doi.org/10.1101/lm.966208
http://www.ncbi.nlm.nih.gov/pubmed/18685146
http://dx.doi.org/10.3389/fnbeh.2012.00021
http://www.ncbi.nlm.nih.gov/pubmed/22586380
http://dx.doi.org/10.1126/science.277.5324.376
http://www.ncbi.nlm.nih.gov/pubmed/9219696
http://dx.doi.org/10.1016/0306-4522(88)90077-2
http://www.ncbi.nlm.nih.gov/pubmed/3380307


ron and pyramidal cells in the human medial temporal lobe in vivo using
extracellular recordings. Hippocampus 17:49–57. CrossRef Medline

Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic
system in monkeys: memory or attention? Behav Brain Res 75:13–25.
CrossRef Medline

Wallenstein GV, Eichenbaum H, Hasselmo ME (1998) The hippocampus as
an associator of discontiguous events. Trends Neurosci 21:317–323.
CrossRef Medline

Weber EU, Shafir S, Blais AR (2004) Predicting risk sensitivity in humans
and lower animals: risk as variance or coefficient of variation. Psychol Rev
111:430 – 445. CrossRef Medline

Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982)
Alzheimer’s disease and senile dementia: loss of neurons in the basal
forebrain. Science 215:1237–1239. CrossRef Medline

Wiech K, Tracey I (2013) Pain, decisions, and actions: a motivational per-
spective. Front Neurosci 7:46. CrossRef Medline

Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neu-
ron 46:681– 692. CrossRef Medline

Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K
(2008) Stereotaxic probabilistic maps of the magnocellular cell
groups in human basal forebrain. Neuroimage 42:1127–1141.
CrossRef Medline

Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy
Z (2015) Neurons in the basal forebrain project to the cortex in a
complex topographic organization that reflects corticocortical con-
nectivity patterns: an experimental study based on retrograde
tracing and 3D reconstruction. Cereb Cortex 25:118 –137. CrossRef
Medline

Monosov et al. • Neurons in the Primate Medial Basal Forebrain J. Neurosci., May 13, 2015 • 35(19):7443–7459 • 7459

http://dx.doi.org/10.1002/hipo.20241
http://www.ncbi.nlm.nih.gov/pubmed/17143903
http://dx.doi.org/10.1016/0166-4328(95)00143-3
http://www.ncbi.nlm.nih.gov/pubmed/8800650
http://dx.doi.org/10.1016/S0166-2236(97)01220-4
http://www.ncbi.nlm.nih.gov/pubmed/9720595
http://dx.doi.org/10.1037/0033-295X.111.2.430
http://www.ncbi.nlm.nih.gov/pubmed/15065916
http://dx.doi.org/10.1126/science.7058341
http://www.ncbi.nlm.nih.gov/pubmed/7058341
http://dx.doi.org/10.3389/fnins.2013.00046
http://www.ncbi.nlm.nih.gov/pubmed/23565073
http://dx.doi.org/10.1016/j.neuron.2005.04.026
http://www.ncbi.nlm.nih.gov/pubmed/15944135
http://dx.doi.org/10.1016/j.neuroimage.2008.05.055
http://www.ncbi.nlm.nih.gov/pubmed/18585468
http://dx.doi.org/10.1093/cercor/bht210
http://www.ncbi.nlm.nih.gov/pubmed/23964066

	Washington University School of Medicine
	Digital Commons@Becker
	2015

	Neurons in the primate medial basal forebrain signal combined information about reward uncertainty, value, and punishment anticipation
	Ilya E. Monosov
	David A. Leopold
	Okihide Hikosaka
	Recommended Citation


	Neurons in the Primate Medial Basal Forebrain Signal Combined Information about Reward Uncertainty, Value, and Punishment Anticipation
	Introduction
	Materials and Methods
	Results
	Characterization of Type 2 neurons in the mBF
	mBF Type 2 neurons signal unexpected outcomes (Experiment 2)
	mBF Type 2 neurons signal reward variance (Experiment 4)
	Type 2 hotspot projects to the intermediate HF (Experiment 6)
	Discussion

	References

