1,224 research outputs found

    NASA's Next Generation 100 Gbps Optical Communications Relay

    Get PDF
    NASAs Space Communications and Navigation (SCaN) program is creating an operational optical communications network to complement its current radio frequency (RF) networks. NASA is currently planning for a new optical communications relay node in geostationary (GEO) orbit to be commissioned in 2025, developed by NASAs Goddard Space Flight Center (GSFC), as evolved from Goddards Laser Communications Relay Demonstration (LCRD) GEO relay payload that will launch in 2019. The Next Generation optical relay node will serve as an initial element in a larger optical networking constellation that will consist of Government and commercial, and international relays. NASAs nodes will aggregate traffic at data rates of up to 10 Gigabits per second (Gbps) from users on the Earths surface and up through suborbital, LEO, MEO, GEO, cislunar and even out to Earth-Sun Lagrange (1.25 Mkm) distances. Users that require low-latency will be serviced with an onboard complementary Ka-band downlink service. The next generation network will deploy 100 Gbps space-to-ground links and also optical crosslinks between nodes to allow for user traffic backhaul to minimize ground station location constraints

    Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma

    Get PDF
    The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annotation information about each gene, as well as biologically relevant groups of genes. We present EVA as a flexible combination of statistics and biological annotation that provides a straightforward visual interface for the interpretation of microarray analyses of gene expression in the most commonly occuring class of brain tumors, glioma. We demonstrate the utility of EVA for the biological interpretation of statistical results by analyzing publicly available gene expression profiles of two important glial tumors. The results of a statistical comparison between 21 malignant, high-grade glioblastoma multiforme (GBM) tumors and 19 indolent, low-grade pilocytic astrocytomas were analyzed using EVA. By using EVA to examine the results of a relatively simple statistical analysis, we were able to identify tumor class-specific gene expression patterns having both statistical and biological significance. Our interactive analysis highlighted the potential importance of genes involved in cell cycle progression, proliferation, signaling, adhesion, migration, motility, and structure, as well as candidate gene loci on a region of Chromosome 7 that has been implicated in glioma. Because EVA does not require statistical or computational expertise and has the flexibility to accommodate any type of statistical analysis, we anticipate EVA will prove a useful addition to the repertoire of computational methods used for microarray data analysis. EVA is available at no charge to academic users and can be found at http://www.epistasis.org

    Wormhole Cosmology and the Horizon Problem

    Full text link
    We construct an explicit class of dynamic lorentzian wormholes connecting Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way transmission of signals between spatially separated regions of spacetime and could permit such regions to come into thermal contact. The cosmology of a network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe

    BPS Force Balances via Spin-Spin Interactions

    Get PDF
    We study two systems of BPS solitons in which spin-spin interactions are important in establishing the force balances which allow static, multi-soliton solutions to exist. Solitons in the Israel-Wilson-Perjes (IWP) spacetimes each carry arbitrary, classical angular momenta. Solitons in the Aichelburg-Embacher "superpartner" spacetimes carry quantum mechanical spin, which originates in the zero-modes of the gravitino field of N=2 supergravity in an extreme Reissner-Nordstrom background. In each case we find a cancellation between gravitational spin-spin and magnetic dipole-dipole forces, in addition to the usual one between Newtonian gravitational attraction and Coulombic electrostatic repulsion. In both cases, we analyze the forces between two solitons by treating one of the solitons as a probe or test particle, with the appropriate properties, moving in the background of the other. In the IWP case, the equation of motion for a spinning test particle, originally due to Papapetrou, includes a coupling between the background curvature and the spin of the test particle. In the superpartner case, the relevant equation of motion follows from a kappa-symmetric superparticle action.Comment: 11 page

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Psychophysiologic responses to the Rorschach in PTSD patients, noncombat and combat controls

    Full text link
    While psychophysiologic studies of posttraumatic stress disorder (PTSD) have investigated the effects of trauma-related stimuli on arousal, none have explored the development of intrusive imagery and affect states in the absence of such specific cues. The present study compares autonomic arousal during PTSD-related Rorschach responses in PTSD veterans vs. combat controls and noncombat controls. It was found that Rorschach responses containing traumatic content were found only in the PTSD group, and that these responses showed elevations in skin conductance (SC) and heart rate (HR). Our data also suggest that PTSD patients are more easily hyperaroused, especially under conditions of experienced stress and helplessness. Finally, combat control subjects exhibited lower baseline SC and HR than their counterparts, as well as decelerated HR during trauma- and stress-related Rorschach responses, suggesting a physiologic resilience in this group. Depression and Anxiety 8:112–120, 1998. © 1998 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35216/1/3_ftp.pd

    Ditopic receptors containing urea groups for solvent extraction of Cu(II) salts

    Get PDF
    [Abstract] The ditopic receptor L3 [1-(2-((7-(4-(tert-butyl)benzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)phenyl)-3-(3-nitrophenyl)urea] containing a macrocyclic cyclen unit for Cu(II)-coordination and a urea moiety for anion binding was designed for recognition of metal salts. The X-ray structure of [CuL3(SO4)] shows that the sulfate anion is involved in cooperative binding via coordination to the metal ion and hydrogen-bonding to the urea unit. This behaviour is similar to that observed for the related receptor L1 [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea], which forms a dimeric [CuL1(ÎŒ-SO4)]2 structure in the solid state. In contrast, the single crystal X-ray structure of [ZnL3(NO3)2] contains a 1 : 2 complex (metal : anion) where one anion coordinates to the metal and the other is hydrogen-bonded to the urea group. Spectrophotometric titrations performed for the [CuL3(OSMe2)]2+ complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2− > Cl− > H2PO4− > Br− > NO2− > HSO4− > NO3−. Lipophilic analogues of L1 and L3 extract CuSO4 and CuCl2 from water into chloroform with high selectivity over the corresponding Co(II), Ni(II) and Zn(II) salts.Xunta de Galicia; EM 2012/088Xunta de Galicia; CN-2012/01

    Confronting the Superbubble Model with X-ray Observations of 30 Dor C

    Get PDF
    We present an analysis of XMM-Newton observations of the superbubble 30 Dor C and compare the results with the predictions from the standard wind-blown bubble model. We find that the observed X-ray spectra cannot be fitted satisfactorily with the model alone and that there is evidence for nonthermal X-ray emission, which is particularly important at > 4 keV. The total unabsorbed 0.1-10 keV luminosities of the eastern and western parts of the bubble are ~3 10^36 erg/s and ~5 10^36 erg/s, respectively. The unabsorbed 0.1-10 keV luminosity of the bubble model is 4 10^36 erg/s and so the power-law component contributes between 1/3 and 1/2 to the total unabsorbed luminosity in this energy band. The nature of the hard nonthermal emission is not clear, although recent supernovae in the bubble may be responsible. We expect that about one or two core-collapse supernovae could have occured and are required to explain the enrichment of the hot gas, as evidenced by the overabundance of alpha-elements by a factor of 3, compared to the mean value of 0.5 solar for the interstellar medium in the Large Magellanic Cloud. As in previous studies of various superbubbles, the amount of energy currently present in 30 Dor C is significantly less than the expected energy input from the enclosed massive stars over their lifetime. We speculate that a substantial fraction of the input energy may be radiated in far-infrared by dust grains, which are mixed with the hot gas because of the thermal conduction and/or dynamic mixing.Comment: 25 pages, 4 figures. To appear in The Astrophysical Journal, August 20, 2004 issu
    • 

    corecore