598 research outputs found

    Bats of the Jessieville Ranger District, Ouachita National Forest, Arkansas

    Get PDF
    During July and August 2000 and 2001, mist nets were set concentrated on three drainages in the Jessieville District of the Ouachita National Forest: North Fork Ouachita River (ten sites), Irons Fork Creek (five sites), and Muddy Creek (two sites). A total of 83 bats representing seven species was caught during 20 evenings (43 net nights). Sampled habitats included pools in road ruts, intermittent streams, man-made ponds on ridgelines, a wet road rut fed by a seep, small drainages that flowed only after a heavy rain, a standing pool in a clearing, and larger streams. Eastern red bats (Lasiurus borealis) were caught 64 times. Other bats caught included three evening bats (Nycticeius humeralis), eight eastern pipistrelles (Pipistrellus subflavus), two hoary bats (Lasiurus cinereus), three northern long-eared myotis (Myotis septentrionalis), one big brown bat (Eptesicus fuscus), and two Seminole bats (Lasiurus seminolus). A juvenile Seminole bat, only recently volant, represents the first documentation of likely reproduction of this bat in Arkansas

    Synchronization of Energy Consumption By Human Societies Throughout the Holocene

    Get PDF
    We conduct a global comparison of the consumption of energy by human populations throughout the Holocene and statistically quantify coincident changes in the consumption of energy over space and time—an ecological phenomenon known as synchrony. When populations synchronize, adverse changes in ecosystems and social systems may cascade from society to society. Thus, to develop policies that favor the sustained use of resources, we must understand the processes that cause the synchrony of human populations. To date, it is not clear whether human societies display long-term synchrony or, if they do, the potential causes. Our analysis begins to fill this knowledge gap by quantifying the long-term synchrony of human societies, and we hypothesize that the synchrony of human populations results from (i) the creation of social ties that couple populations over smaller scales and (ii) much larger scale, globally convergent trajectories of cultural evolution toward more energy-consuming political economies with higher carrying capacities. Our results suggest that the process of globalization is a natural consequence of evolutionary trajectories that increase the carrying capacities of human societies

    Synchronization of Energy Consumption By Human Societies Throughout the Holocene

    Get PDF
    We conduct a global comparison of the consumption of energy by human populations throughout the Holocene and statistically quantify coincident changes in the consumption of energy over space and time—an ecological phenomenon known as synchrony. When populations synchronize, adverse changes in ecosystems and social systems may cascade from society to society. Thus, to develop policies that favor the sustained use of resources, we must understand the processes that cause the synchrony of human populations. To date, it is not clear whether human societies display long-term synchrony or, if they do, the potential causes. Our analysis begins to fill this knowledge gap by quantifying the long-term synchrony of human societies, and we hypothesize that the synchrony of human populations results from (i) the creation of social ties that couple populations over smaller scales and (ii) much larger scale, globally convergent trajectories of cultural evolution toward more energy-consuming political economies with higher carrying capacities. Our results suggest that the process of globalization is a natural consequence of evolutionary trajectories that increase the carrying capacities of human societies

    Tunable Indistinguishable Photons From Remote Quantum Dots

    Full text link
    Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm^-1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots

    Optical Spectroscopy of Supernova 1993J During Its First 2500 Days

    Get PDF
    We present 42 low-resolution spectra of Supernova (SN) 1993J, our complete collection from the Lick and Keck Observatories, from day 3 after explosion to day 2454, as well as one Keck high-dispersion spectrum from day 383. SN 1993J began as an apparent SN II, albeit an unusual one. After a few weeks, a dramatic transition took place, as prominent helium lines emerged in the spectrum. SN 1993J had metamorphosed from a SN II to a SN IIb. Nebular spectra of SN 1993J closely resemble those of SNe Ib and Ic, but with a persistent H_alpha line. At very late times, the H_alpha emission line dominated the spectrum, but with an unusual, box-like profile. This is interpreted as an indication of circumstellar interaction.Comment: 19 pages plus 13 figures, AASTeX V5.0. One external table in AASTeX V4.0, in landscape format. Accepted for publication in A

    Sub-microsecond correlations in photoluminescence from InAs quantum dots

    Full text link
    Photon correlation measurements reveal memory effects in the optical emission of single InAs quantum dots with timescales from 10 to 800 ns. With above-band optical excitation, a long-timescale negative correlation (antibunching) is observed, while with quasi-resonant excitation, a positive correlation (blinking) is observed. A simple model based on long-lived charged states is presented that approximately explains the observed behavior, providing insight into the excitation process. Such memory effects can limit the internal efficiency of light emitters based on single quantum dots, and could also be problematic for proposed quantum-computation schemes.Comment: 8 pages, 8 figure
    corecore