249 research outputs found

    A conserved lipid-binding loop in the kindlin FERM F1 domain is required for kindlin-mediated aIIbB3 integrin coactivation

    Get PDF
    The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin beta subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin beta-tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin beta subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in aIIbB3 integrin activation, but not for kindlin binding to integrin beta tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well beta-integrin tails contribute to the ability of kindlins to activate integrins

    The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    Get PDF
    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development

    A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth

    Get PDF
    Acknowledgments We are very grateful to Leigh Knodler for her generous gift of P22 phages from a S. Typhimurium glmS::Cm::mCherry strain. We thank the Microscopy and Histology Core Facility, the Centre for Genome-Enabled Biology and Medicine (CGEBM), the Iain Fraser Cytometry Centre and the qPCR Facility (University of Aberdeen) for their support and assistance in this work. We thank members of the Spanò/Baldassarre laboratory for their feedback throughout this project. The content of this manuscript has been posted as a preprint on bioRxiv (Solano-Collado et al., 2020). Funding This work was supported by the European Union’s Horizon 2020 research and innovation program Marie Skłodowska-Curie Fellowship (706040_KILLINGTYPHI) to VS-C, the Wellcome Trust (Seed Award 109680/Z/15/Z), the European Union’s Horizon 2020 ERC consolidator award (2016-726152-TYPHI), the BBSRC (BB/N017854/1) and Tenovus Scotland (G14/19) to SS.Peer reviewedPublisher PD

    JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation

    Get PDF
    Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L–VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells

    Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    Get PDF
    Background: In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Results: Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Conclusion: Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti-adhesion O157 vaccines

    JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation

    Get PDF
    Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L–VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells

    Molecular Basis for Integrin Adhesion Receptor Binding to p21-activated kinase 4 (PAK4)

    Get PDF
    Integrin adhesion receptors provide links between extracellular ligands and cytoplasmic signaling. Multiple kinases have been found to directly engage with integrin β tails, but the molecular basis for these interactions remain unknown. Here, we assess the interaction between the kinase domain of p21-activated kinase 4 (PAK4) and the cytoplasmic tail of integrin β5. We determine three crystal structures of PAK4-β5 integrin complexes and identify the PAK-binding site. This is a region in the membrane-proximal half of the β5 tail and confirmed by site-directed mutagenesis. The β5 tail engages the kinase substrate-binding groove and positions the non-phosphorylatable integrin residue Glu767 at the phosphoacceptor site. Consistent with this, integrin β5 is poorly phosphorylated by PAK4, and in keeping with its ability to occlude the substrate-binding site, weakly inhibits kinase activity. These findings demonstrate the molecular basis for β5 integrin-PAK4 interactions but suggest modifications in understanding the potential cellular role of this interaction

    Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β-dependent mechanisms

    Get PDF
    ACKNOWLEDGMENTS. We thank Phillip B. Murray for help with the shRNA mapping pipeline and Francesc Lopez-Giraldez for help with RNAseq mapping software.Peer reviewedPostprintPostprin
    corecore