281 research outputs found

    Laboratory Focus on Improving the Culture of Biosafety: Statewide Risk Assessment of Clinical Laboratories That Process Specimens for Microbiologic Analysis

    Get PDF
    The Wisconsin State Laboratory of Hygiene challenged Wisconsin laboratories to examine their biosafety practices and improve their culture of biosafety. One hundred three clinical and public health laboratories completed a questionnaire-based, microbiology-focused biosafety risk assessment. Greater than 96% of the respondents performed activities related to specimen processing, direct microscopic examination, and rapid nonmolecular testing, while approximately 60% performed culture interpretation. Although they are important to the assessment of risk, data specific to patient occupation, symptoms, and travel history were often unavailable to the laboratory and, therefore, less contributory to a microbiology-focused biosafety risk assessment than information on the specimen source and test requisition. Over 88% of the respondents complied with more than three-quarters of the mitigation control measures listed in the survey. Facility assessment revealed that subsets of laboratories that claim biosafety level 1, 2, or 3 status did not possess all of the biosafety elements considered minimally standard for their respective classifications. Many laboratories reported being able to quickly correct the minor deficiencies identified. Task assessment identified deficiencies that trended higher within the general (not microbiology-specific) laboratory for core activities, such as packaging and shipping, direct microscopic examination, and culture modalities solely involving screens for organism growth. For traditional microbiology departments, opportunities for improvement in the cultivation and management of highly infectious agents, such as acid-fast bacilli and systemic fungi, were revealed. These results derived from a survey of a large cohort of small- and large-scale laboratories suggest the necessity for continued microbiology-based understanding of biosafety practices, vigilance toward biosafety, and enforcement of biosafety practices throughout the laboratory setting

    altVerto: using intervention and community to promote alternative transportation

    Get PDF
    This paper was submitted to the CHI 2007 Conference as a student design competition project, winning the design competition.We seek to motivate drivers who regularly use web-based local and mapping services and have access to viable alternative transit methods — such as public transportation, carpooling, walking or bicycling — to use these alternatives instead of driving alone. altVerto works with users’ existing habits to intervene during trip planning, and then sustains long-term positive behavior through progress tracking and community-building around alternatives to driving. Our study investigates how computer-mediated intervention at decision making moments and online transit-related community motivates and sustains the use of alternative transit methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78393/1/altVerto_2007_GukeisenHutchfulKleymeerMunson.pd

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens

    The Grizzly, March 28, 1980

    Get PDF
    Campus Visitor Assaulted • Two Students Found Guilty Of Violations • Committee Studies Frats\u27 Academics • Lantern Seeks Editor • Administration Apathy or Illiteracy? • TKE Sponsors X-Country Keg Roll • USGA Notes • President Urges Sidewalk Use • USGA Candidates\u27 Platforms • Repko\u27s Review • Interest inventory to be given again • Checking By Mail • Jazz Coffeehouse At The Union • Portrait Of A Professor: Dr. S. Ross Doughty • Survey Taken Of Class Of \u2779 • Earl Awarded at Evening School • Whitians Chosen • Bears Win Home Opener • Spring Track Starts Tomorrow • Slow Start For Men\u27s Lacrossehttps://digitalcommons.ursinus.edu/grizzlynews/1037/thumbnail.jp

    Strengthening Public Health in Wisconsin Through the Wisconsin Clinical Laboratory Network

    Get PDF
    The Wisconsin Clinical Laboratory Network (WCLN) at the University of Wisconsin–Madison is a partnership of 138 clinical and public health laboratories (as of February 2019) coordinated by the Wisconsin State Laboratory of Hygiene. This article describes the WCLN, its current activities, and lessons learned through this partnership. A laboratory technical advisory group, which consists of representatives from clinical laboratories, provides clinical laboratory perspective to the WCLN and fosters communication among laboratories. Activities and resources available through the WCLN include annual regional meetings, annual technical workshops, webinars, an email listserv, laboratory informational messages, in-person visits by a WCLN coordinator to clinical laboratories, and laboratory-based surveillance data and summaries distributed by the Wisconsin State Laboratory of Hygiene. One challenge to maintaining the WCLN is securing continual funding for network activities. Key lessons learned from this partnership of more than 20 years include the importance of in-person meetings, the clinical perspective of the laboratory technical advisory group, and providing activities and resources to clinical laboratories to foster sharing of data and clinical specimens for public health surveillance and outbreak response

    Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    Get PDF
    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas

    The Grizzly, November 30, 1979

    Get PDF
    College Costs To Skyrocket • Committee Explores Campus Problems • Audiovisual Services Relocated in Myrin • USGA Notes • Letters to the Editor • Roving Reporter: Iranian Crisis • Portrait of a Professor: Dr. John Wickersham • JDB - Full of Surprises • Vonnegut\u27s \u27Jailbird\u27: Life of Walter Starbuck • Pilgrim To Speak On Economy • Cagers Open 79-80 Campaign With Victory • Gridders Win Finale With Shut-Out • Garner Races To 68th In Nation • Sports Profile: Rick Morris • Pool Records Sethttps://digitalcommons.ursinus.edu/grizzlynews/1029/thumbnail.jp

    Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads

    Get PDF
    The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes
    • …
    corecore