25 research outputs found

    Cellular/Molecular Dual Modulation of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Protects against Excitotoxicity

    Get PDF
    The endocannabinoid system has been suggested to elicit signals that defend against several disease states including excitotoxic brain damage. Besides direct activation with CB 1 receptor agonists, cannabinergic signaling can be modulated through inhibition of endocannabinoid transport and fatty acid amide hydrolase (FAAH), two mechanisms of endocannabinoid inactivation. To test whether the transporter and FAAH can be targeted pharmacologically to modulate survival/repair responses, the transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404) and the FAAH inhibitor palmitylsulfonyl fluoride (AM374) were assessed for protection against excitotoxicity in vitro and in vivo. AM374 and AM404 both enhanced mitogen-activated protein kinase (MAPK) activation in cultured hippocampal slices. Interestingly, combining the distinct inhibitors produced additive effects on CB 1 signaling and associated neuroprotection. After an excitotoxic insult in the slices, infusing the AM374/AM404 combination protected against cytoskeletal damage and synaptic decline, and the protection was similar to that produced by the stable CB 1 agonist AM356 (R-methanandamide). AM374/ AM404 and the agonist also elicited cytoskeletal and synaptic protection in vivo when coinjected with excitotoxin into the dorsal hippocampus. Correspondingly, potentiating endocannabinoid responses with the AM374/AM404 combination prevented behavioral alterations and memory impairment that are characteristic of excitotoxic damage. The protective effects mediated by AM374/AM404 were (1) evident 7 d after insult, (2) correlated with the preservation of CB 1 -linked MAPK signaling, and (3) were blocked by a selective CB 1 antagonist. These results indicate that dual modulation of the endocannabinoid system with AM374/AM404 elicits neuroprotection through the CB 1 receptor. The transporter and FAAH are modulatory sites that may be exploited to enhance cannabinergic signaling for therapeutic purposes

    SELNET clinical practice guidelines for bone sarcoma

    Get PDF
    Bone sarcoma are infrequent diseases, representing < 0.2% of all adult neoplasms. A multidisciplinary management within reference centers for sarcoma, with discussion of the diagnostic and therapeutic strategies within an expert multidisciplinary tumour board, is essential for these patients, given its heterogeneity and low frequency. This approach leads to an improvement in patient's outcome, as demonstrated in several studies. The Sarcoma European Latin-American Network (SELNET), aims to improve clinical outcome in sarcoma care, with a special focus in Latin-American countries. These Clinical Practice Guidelines (CPG) have been developed and agreed by a multidisciplinary expert group (including medical and radiation oncologist, surgical oncologist, orthopaedic surgeons, radiologist, pathologist, molecular biologist and representatives of patients advocacy groups) of the SELNET consortium, and are conceived to provide the standard approach to diagnosis, treatment and follow-up of bone sarcoma patients in the Latin-American context

    Radiopaque drug-eluting beads for transcatheter embolotherapy: Experimental study of drug penetration and coverage in swine

    No full text
    Purpose: To determine local doxorubicin levels surrounding radiopaque drug-eluting beads (DEBs) in normal swine liver and kidney following transcatheter arterial chemoembolization. The influence of bead size (70150 μm or 100300 μm) was compared with regard to tissue penetration and spatial distribution of the bead, as well as eventual drug coverage (ie, amount of tissue exposed to drug). Materials and Methods: Radiopaque DEBs were synthesized by suspension polymerization followed by incorporation of iodized oil and doxorubicin. Chemoembolization of swine liver and kidney was performed under fluoroscopic guidance. Three-dimensional tissue penetration of imageable DEBs was investigated ex vivo with microcomputed tomography (microCT). Drug penetration from the bead surface and drug coverage was evaluated with epifluorescence microscopy, and cellular localization of doxorubicin was evaluated with confocal microscopy. Necrosis was evaluated with hematoxylin and eosin staining. Results: MicroCT demonstrated that 70150-μm DEBs were present in more distal arteries and located in a more frequent and homogeneous spatial distribution. Tissue penetration of doxorubicin from the bead appeared similar (∼300 μm) for both DEBs, with a maximum tissue drug concentration at 1 hour coinciding with nuclear localization of doxorubicin. The greater spatial frequency of the 70150-μm DEBs resulted in approximately twofold improved drug coverage in kidney. Cellular death is predominantly observed around the DEBs beginning at 8 hours, but increased at 24 and 168 hours. Conclusions: Smaller DEBs penetrated further into targeted tissue (ie, macroscopic) with a higher spatial density, resulting in greater and more uniform drug coverage (ie, microscopic) in swine. © 2012 SIR

    Development of Imageable Beads for Transcatheter Embolotherapy

    No full text
    Purpose: To develop and characterize radiopaque embolization microspheres capable of in vivo detection with intraprocedural fluoroscopy and computed tomography (CT) imaging and to evaluate their spatial distribution inside target tissues during and after transcatheter embolization. Materials and Methods: Polyvinyl alcohol hydrogel microspheres were loaded with Lipiodol and examined for iodine content, stability of loading, and conspicuity with fluoroscopy and CT in vitro. Transcatheter embolization of swine liver and kidney was performed with the radiopaque microspheres and spatial distribution was evaluated with intraprocedural fluoroscopy and CT. Ex vivo evaluation was performed with light microscopy and micro-CT. Results: In vitro analyses demonstrated that radiopaque microspheres could be loaded with sufficient iodine content to be detected with routine fluoroscopy and CT imaging and that such loading was relatively stable. Radiopaque microspheres were visible in vivo with fluoroscopy and CT during transcatheter embolization. CT imaging during embolization procedures demonstrated a dose-dependent relationship in the number and size of visualized embolized arteries. Imaging features of radiopaque microsphere distribution inside target tissues correlated well with ex vivo light microscopic and micro-CT evaluation of microsphere distribution. Conclusions: Radiopaque embolization microspheres are visualized during transcatheter embolization with routine intraprocedural fluoroscopy and CT. These radiopaque microspheres provided the three-dimensional spatial distribution of embolic material inside target organs during the procedure, and therefore can provide real-time intraprocedural feedback for the interventional radiologist. These microspheres may be useful for demonstrating the influence of material and technical variability in transcatheter embolization in addition to providing intraprocedural identification of tissue at risk of undertreatment. © 2010 SIR
    corecore