73 research outputs found

    The Far-Infrared Luminosity Function from GOODS-N: Constraining the Evolution of Infrared Galaxies for z \leq 1

    Get PDF
    We present the IR luminosity function derived from ultra-deep 70 micron imaging of the GOODS-North field. The 70 micron observations are longward of the PAH and silicate features which complicate work in the MIR. We derive far-infrared luminosities for the 143 sources with S_{70} > 2 mJy (S/N > 3 \sigma). The majority (81%) of the sources have spectroscopic redshifts, and photometric redshifts are calculated for the remainder. The IR luminosity function at four redshifts (z ~ 0.28, 0.48, 0.78, and 0.97) is derived and compared to the local one. There is considerable degeneracy between luminosity and density evolution. If the evolving luminosity function is described as \rho(L, z) = (1 + z)^q \rho(L/(1 + z)^p, 0), we find q = -2.19p + 6.09. In the case of pure luminosity evolution, we find a best fit of p = 2.78^{+0.34}_{-0.32}. This is consistent with the results from 24 micron and 1.4 GHz studies. Our results confirm the emerging picture of strong evolution in LIRGs and ULIRGs at 0.4 < z < 1.1, but we find no evidence of significant evolution in the sub-LIRG (L < 10^{11} L_{\odot}) population for z < 0.4.Comment: accepted by ApJL, 5 page

    Molecular Gas in the z=1.2 Ultraluminous Merger GOODS J123634.53+621241.3

    Get PDF
    We report the detection of CO(2-1) emission from the z=1.2 ultraluminous infrared galaxy (ULIRG) GOODS J123634.53+621241.3 (also known as the sub-millimeter galaxy GN26). These observations represent the first discovery of high-redshift CO emission using the new Combined Array for Research in Millimeter-Wave Astronomy (CARMA). Of all high-redshift (z>1) galaxies within the GOODS-North field, this source has the largest far-infrared (FIR) flux observed in the Spitzer 70um and 160um bands. The CO redshift confirms the optical identification of the source, and the bright CO(2-1) line suggests the presence of a large molecular gas reservoir of about 7x10^10 M(sun). The infrared-to-CO luminosity ratio of L(IR)/L'(CO) = 80+/-30 L(sun) (K Km/s pc^2)^-1 is slightly smaller than the average ratio found in local ULIRGs and high-redshift sub-millimeter galaxies. The short star-formation time scale of about 70 Myr is consistent with a starburst associated with the merger event and is much shorter than the time scales for spiral galaxies and estimates made for high-redshift galaxies selected on the basis of their B-z and z-K colors.Comment: Accepted for publication in ApJ Letter

    Detection of CO from SMM J16359+6612, The Multiply Imaged Submillimeter Galaxy Behind A2218

    Full text link
    We report the detection of CO (JJ=3→\to2) line emission from all three multiple images (A,B and C) of the intrinsically faint (≃\simeq 0.8 mJy) submillimeter-selected galaxy SMM J16359+6612. The brightest source of the submm continuum emission (B) also corresponds to the brightest CO emission, which is centered at zz=2.5168, consistent with the pre-existing redshift derived from \Ha. The observed CO flux in the A, B and C images is 1.2, 3.5 and 1.6 Jy \kms respectively, with a linewidth of 500±100500\pm 100 \kms. After correcting for the lensing amplification, the CO flux corresponds to a molecular gas mass of ∌2×1010h71−2\sim 2\times 10 ^{10} h_{71}^{-2} \Msun, while the extent of the CO emission indicates that the dynamical mass of the system ∌9×1010\sim9\times10^{10} \Msun. Two velocity components are seen in the CO spectra; these could arise from either a rotating compact ring or disk of gas, or merging substructure. The star formation rate in this galaxy was previously derived to be ∌\sim100--500 \Msun \yr. If all the CO emission arises from the inner few kpc of the galaxy and the galactic CO-to-H2_2 conversion factor holds, then the gas consumption timescale is a relatively short 40 Myr, and so the submm emission from SMM J16359+6612 may be produced by a powerful, but short-lived circumnuclear starburst event in an otherwise normal and representative high-redshift galaxy.Comment: Appearing in the 2004 October 10 issue of the Astrophysical Journal Letters, Volume 614, L5-L

    The Infrared Properties of Submillimeter Galaxies: Clues From Ultra-Deep 70 Micron Imaging

    Get PDF
    We present 70 micron properties of submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey (GOODS) North field. Out of thirty submillimeter galaxies (S_850 > 2 mJy) in the central GOODS-N region, we find two with secure 70 micron detections. These are the first 70 micron detections of SMGs. One of the matched SMGs is at z ~ 0.5 and has S_70/S_850 and S_70/S_24 ratios consistent with a cool galaxy. The second SMG (z = 1.2) has infrared-submm colors which indicate it is more actively forming stars. We examine the average 70 micron properties of the SMGs by performing a stacking analysis, which also allows us to estimate that S_850 > 2 mJy SMGs contribute 9 +- 3% of the 70 micron background light. The S_850/S_70 colors of the SMG population as a whole is best fit by cool galaxies, and because of the redshifting effects these constraints are mainly on the lower z sub-sample. We fit Spectral Energy Distributions (SEDs) to the far-infrared data points of the two detected SMGs and the average low redshift SMG (z_{median}= 1.4). We find that the average low-z SMG has a cooler dust temperature than local ultraluminous infrared galaxies (ULIRGs) of similar luminosity and an SED which is best fit by scaled up versions of normal spiral galaxies. The average low-z SMG is found to have a typical dust temperature T = 21 -- 33 K and infrared luminosity L_{8-1000 micron} = 8.0 \times 10^11 L_sun. We estimate the AGN contribution to the total infrared luminosity of low-z SMGs is less than 23%.Comment: Accepted by ApJ. 14 pages, 6 figures. Minor revisions 20th Dec 200

    Spitzer Observations of the z=2.73 Lensed Lyman Break Galaxy, MS1512-cB58

    Get PDF
    We present Spitzer infrared (IR) photometry and spectroscopy of the lensed Lyman break galaxy (LBG), MS1512-cB58 at z=2.73. The large (factor ~30) magnification allows for the most detailed infrared study of an L*_UV(z=3) LBG to date. Broadband photometry with IRAC (3-10 micron), IRS (16 micron), and MIPS (24, 70 & 160 micron) was obtained as well as IRS spectroscopy spanning 5.5-35 microns. A fit of stellar population models to the optical/near-IR/IRAC photometry gives a young age (~9 Myr), forming stars at ~98 M_sun/yr, with a total stellar mass of ~10^9 M_sun formed thus far. The existence of an old stellar population with twice the stellar mass can not be ruled out. IR spectral energy distribution fits to the 24 and 70 micron photometry, as well as previously obtained submm/mm, data give an intrinsic IR luminosity L_IR = 1-2 x10^11 L_sun and a star formation rate, SFR ~20-40 M_sun/yr. The UV derived star formation rate (SFR) is ~3-5 times higher than the SFR determined using L_IR or L_Halpha because the red UV spectral slope is significantly over predicting the level of dust extinction. This suggests that the assumed Calzetti starburst obscuration law may not be valid for young LBGs. We detect strong line emission from Polycyclic Aromatic Hydrocarbons (PAHs) at 6.2, 7.7, and 8.6 microns. The line ratios are consistent with ratios observed in both local and high redshift starbursts. Both the PAH and rest-frame 8 micron luminosities predict the total L_IR based on previously measured relations in starbursts. Finally, we do not detect the 3.3 micron PAH feature. This is marginally inconsistent with some PAH emission models, but still consistent with PAH ratios measured in many local star-forming galaxies.Comment: Accepted for publication in ApJ. aastex format, 18 pages, 7 figure

    Spitzer infrared spectrometer 16ÎŒm observations of the GOODS fields

    Get PDF
    We present Spitzer 16ÎŒm imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 arcmin^2 in each of the two GOODS fields (North and South), to an average 3σ depth of 40 and 65 ÎŒJy, respectively. We detect ~1300 sources in both fields combined. We validate the photometry using the 3–24ÎŒm spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields shows reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross-correlated with available Spitzer, Chandra, and Hubble Space Telescope data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI with improved uncertainties. We examine the 16–24ÎŒm flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S_(16)/S_(24) > 1.4 selects mostly sources which lie at 1.1 < z < 1.6, where the 24ÎŒm passband contains both the redshifted 9.7 ÎŒm silicate absorption and the minimum between polycyclic aromatic hydrocarbon emission peaks. We measure the integrated galaxy light of 16ÎŒm sources and find a lower limit on the galaxy contribution to the extragalactic background light at this wavelength to be 2.2 ± 0.2 nW m^(−2) sr^(−1)

    Multiwavelength Observations of the Low Metallicity Blue Compact Dwarf Galaxy SBS 0335-052

    Get PDF
    New infrared and millimeter observations from Keck, Palomar, ISO, and OVRO and archival data from the NRAO VLA and IRAS are presented for the low metallicity blue compact dwarf galaxy SBS 0335-052. Mid-infrared imaging shows this young star-forming system is compact (0.31"; 80 pc) at 12.5 microns. The large Br-gamma equivalent width (235 Angstroms) measured from integral field spectroscopy is indicative of a ~5 Myr starburst. The central source appears to be optically thin in emission, containing both a warm (~80 K) and a hot (~210 K) dust component, and the overall interstellar radiation field is quite intense, about 10,000 times the intensity in the solar neighborhood. CO emission is not detected, though the galaxy shows an extremely high global H I gas-to-dust mass ratio, high even for blue compact dwarfs. Finally, the galaxy's mid-infrared-to-optical and mid-to-near-infrared luminosity ratios are quite high, whereas its far-infrared-to-radio and far-infrared-to-optical flux ratios are surprisingly similar to what is seen in normal star-forming galaxies. The relatively high bolometric infrared-to-radio ratio is more easily understood in the context of such a young system with negligible nonthermal radio continuum emission. These new lines of evidence may outline features common to primordial galaxies found at high redshift.Comment: 28 pages including 6 figures; accepted for publication in the Astronomical Journa

    Spectral Energy Distributions of Local Luminous And Ultraluminous Infrared Galaxies

    Get PDF
    Luminous and ultraluminous infrared galaxies ((U)LIRGs) are the most extreme star forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison to their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths, and spectral energy distributions (SEDs) for a sample of 53 nearby LIRGs and 11 ULIRGs spanning log (LIR/Lsun) = 11.14-12.57 from the flux-limited Great Observatories All-sky LIRG Survey (GOALS). The SEDs for all objects are similar in that they show a broad, thermal stellar peak and a dominant FIR thermal dust peak, where nuLnu(60um) / nuLnu(V) increases from ~2-30 with increasing LIR. When normalized at IRAS-60um, the largest range in the luminosity ratio, R(lambda)=log[nuLnu(lambda)/nuLnu(60um)] observed over the full sample is seen in the Hard X-rays (HX=2-10 keV). A small range is found in the Radio (1.4GHz), where the mean ratio is largest. Total infrared luminosities, LIR(8-1000um), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log(M/Msun) = 10.79+/-0.40. Star formation rates have been determined from the infrared (SFR_IR~45Msun/yr) and from the monochromatic UV luminosities (SFR_UV~1.3Msun/yr), respectively. Multiwavelength AGN indicators have be used to select putative AGN: about 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.Comment: 39 pages, including 12 figures and 11 tables; accepted for publication in ApJ
    • 

    corecore