15,664 research outputs found
Proposal for a lunar tunnel-boring machine
A need exists for obtaining a safe and habitable lunar base that is free from the hazards of radiation, temperature gradient, and micrometeorites. A device for excavating lunar material and simultaneously generating living space in the subselenian environment was studied at the conceptual level. Preliminary examinations indicate that a device using a mechanical head to shear its way through the lunar material while creating a rigid ceramic-like lining meets design constraints using existing technology. The Lunar Tunneler is totally automated and guided by a laser communication system. There exists the potential for the excavated lunar material to be used in conjunction with a surface mining process for the purpose of the extraction of oxygen and other elements. Experiments into lunar material excavation and further research into the concept of a mechanical Lunar Tunneler are suggested
Transitions in the morphological features, habitat use, and diet of young-of-the-year goosefish (Lophius americanus)
This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish
(Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are
widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habi
Recommended from our members
Self-immolative linkers in polymeric delivery systems
There has been significant interest in the methodologies of controlled release for a diverse range of applications spanning drug delivery, biological and chemical sensors, and diagnostics. The advancement in novel substrate-polymer coupling moieties has led to the discovery of self-immolative linkers. This new class of linker has gained popularity in recent years in polymeric release technology as a result of stable bond formation between protecting and leaving groups, which becomes labile upon activation, leading to the rapid disassembly of the parent polymer. This ability has prompted numerous studies into the design and development of self-immolative linkers and the kinetics surrounding their disassembly. This review details the main concepts that underpin self-immolative linker technologies that feature in polymeric or dendritic conjugate systems and outlines the chemistries of amplified self-immolative elimination
Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions
The Effects of Fish Trap Mesh Size on Reef Fish Catch off Southeastern Florida
Catch and mesh selectivity of wire-meshed fish traps were tested for eleven different mesh sizes ranging from 13 X 13 mm (0.5 x 0.5") to 76 x 152 mm (3 X 6"). A total of 1,810 fish (757 kg) representing 85 species and 28 families were captured during 330 trap hauls off southeastern Florida from December 1986 to July 1988. Mesh size significantly affected catches. The 1.5" hexagonal mesh caught the most fish by number, weight, and value. Catches tended to decline as meshes got smaller or larger. Individual fish size increased with larger meshes. Laboratory mesh retention experiments showed relationships between mesh shape and size and individual retention for snapper (Lutjanidae), grouper (Serranidae), jack (Carangidae), porgy (Sparidae), and surgeonfish (Acanthuridae). These relationships may be used to predict the effect of mesh sizes on catch rates. Because mesh size and shape greatly influenced catchability, regulating mesh size may provide a useful basis for managing the commercial trap fishery
Elimination of the reaction rate 'scale effect': application of the Lagrangian reactive particle-tracking method to simulate mixing-limited, field-scale biodegradation at the Schoolcraft (MI, USA) site
This is the peer reviewed version of the following article: [Ding, D., Benson, D. A., Fernàndez‐Garcia, D., Henri, C. V., Hyndman, D. W., Phanikumar, M. S., & Bolster, D. (2017). Elimination of the reaction rate “scale effect”: Application of the Lagrangian reactive particle‐tracking method to simulate mixing‐limited, field‐scale biodegradation at the Schoolcraft (MI, USA) site. Water Resources Research, 53, 10,411–10,432. https://doi.org/10.1002/2017WR021103], which has been published in final form at https://doi.org/10.1002/2017WR021103. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Measured (or empirically fitted) reaction rates at groundwater remediation sites are typically much lower than those found in the same material at the batch or laboratory scale. The reduced rates are commonly attributed to poorer mixing at the larger scales. A variety of methods have been proposed to account for this scaling effect in reactive transport. In this study, we use the Lagrangian particle-tracking and reaction (PTR) method to simulate a field bioremediation experiment at the Schoolcraft, MI site. A denitrifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the aquifer, along with sufficient substrate, to degrade the contaminant, carbon tetrachloride (CT), under anaerobic conditions. The PTR method simulates chemical reactions through probabilistic rules of particle collisions, interactions, and transformations to address the scale effect (lower apparent reaction rates for each level of upscaling, from batch to column to field scale). In contrast to a prior Eulerian reaction model, the PTR method is able to match the field-scale experiment using the rate coefficients obtained from batch experiments.Peer ReviewedPostprint (author's final draft
Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest
Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Forest Ecology and Management 250 (2007): 234-243, doi:10.1016/j.foreco.2007.05.023.Fire is an important component of the historic disturbance regime of oak and pine forests that occupy sandy soils of the coastal outwash plain of the northeastern U.S. Today prescribed fire is used for fuel reduction and for restoration and maintenance of habitat for rare plant, animal and insect species. We evaluated the effects of the frequency and seasonality of prescribed burning on the soils of a Cape Cod, Massachusetts coastal oak-pine forest. We compared soil bulk density, pH and acidity, total extractable cations and total soil C and N in unburned plots and in plots burned over a 12-year period, along a gradient of frequency (every 1-to-4 years), in either spring (March/April) or summer (July/August). Summer burning decreased soil organic horizon thickness more than spring burning, but only summer burning every 1 to 2 years reduced organic horizons compared with controls. Burning increased soil bulk density of the organic horizon only in the annual summer burns and did not affect bulk density of mineral soil. Burn frequency had no effect on pH in organic soil, but burning every year in summer increased pH of organic soil from 4.01 to 4.95 and of mineral soil from 4.20 to 4.79. Burning had no significant effect on organic or mineral soil percent C, percent N, C:N, soil exchangeable Ca2+, Mg2+, K+ or total soil C or N. Overall effects of burning on soil chemistry were minor. Our results suggest that annual summer burns may be required to reduce soil organic matter thickness to produce conditions that would regularly allow seed germination for oak and for grassland species that are conservation targets. Managers may have to look to other measures, such as combinations of fire with mechanical treatments (e.g., soil scarification) to further promote grasses and forbs in forests where establishment of these plants is a high priority.Funding was provided by the National Park Service, The Nature Conservancy via a grant from the Mellon Foundation, the Joint Fire Science Program, and a grant from the Mellon Foundation to MBL
Automated detection of galaxy-scale gravitational lenses in high resolution imaging data
Lens modeling is the key to successful and meaningful automated strong
galaxy-scale gravitational lens detection. We have implemented a lens-modeling
"robot" that treats every bright red galaxy (BRG) in a large imaging survey as
a potential gravitational lens system. Using a simple model optimized for
"typical" galaxy-scale lenses, we generate four assessments of model quality
that are used in an automated classification. The robot infers the lens
classification parameter H that a human would have assigned; the inference is
performed using a probability distribution generated from a human-classified
training set, including realistic simulated lenses and known false positives
drawn from the HST/EGS survey. We compute the expected purity, completeness and
rejection rate, and find that these can be optimized for a particular
application by changing the prior probability distribution for H, equivalent to
defining the robot's "character." Adopting a realistic prior based on the known
abundance of lenses, we find that a lens sample may be generated that is ~100%
pure, but only ~20% complete. This shortfall is due primarily to the
over-simplicity of the lens model. With a more optimistic robot, ~90%
completeness can be achieved while rejecting ~90% of the candidate objects. The
remaining candidates must be classified by human inspectors. We are able to
classify lens candidates by eye at a rate of a few seconds per system,
suggesting that a future 1000 square degree imaging survey containing 10^7
BRGs, and some 10^4 lenses, could be successfully, and reproducibly, searched
in a modest amount of time. [Abridged]Comment: 17 pages, 11 figures, submitted to Ap
Recommended from our members
Respiratory syncytial virus outbreak in a long-term care facility detected using reverse transcriptase polymerase chain reaction: an argument for real-time detection methods.
ObjectivesTo report an outbreak of respiratory synctyial virus (RSV) in a long-term care facility (LTCF) during ongoing routine respiratory illness surveillance.DesignRapid antigen testing, viral culture, direct fluorescent antibody (DFA) testing, and reverse transcriptase polymerase chain reaction (RT-PCR) testing for up to 15 viruses in symptomatic residents and chart review.SettingA 120-bed LTCF.MeasurementsComparison of rapid antigen testing, respiratory viral cultures, and DFA testing and RT-PCR in residents with symptoms of a respiratory tract infection.ResultsTwenty-two of 52 residents developed symptoms of a respiratory tract infection between January 29, 2008, and February 26, 2008. RSV was detected using RT-PCR in seven (32%) of the 22 cases. None of the seven cases had positive RSV rapid antigen testing, and only two had positive culture or DFA results. This outbreak occurred during a time when state wide RSV rates were rapidly declining. One patient was admitted to the hospital during the infection and subsequently died.ConclusionRSV may cause outbreaks in LTCFs that traditional diagnostic methods do not detect. RT-PCR can provide a more timely and accurate diagnosis of outbreaks, which allows for early symptomatic treatment, rational use of antibiotics, and improved infection control
Fluorescent visualization of a spreading surfactant
The spreading of surfactants on thin films is an industrially and medically
important phenomenon, but the dynamics are highly nonlinear and visualization
of the surfactant dynamics has been a long-standing experimental challenge. We
perform the first quantitative, spatiotemporally-resolved measurements of the
spreading of an insoluble surfactant on a thin fluid layer. During the
spreading process, we directly observe both the radial height profile of the
spreading droplet and the spatial distribution of the fluorescently-tagged
surfactant. We find that the leading edge of spreading circular layer of
surfactant forms a Marangoni ridge in the underlying fluid, with a trough
trailing the ridge as expected. However, several novel features are observed
using the fluorescence technique, including a peak in the surfactant
concentration which trails the leading edge, and a flat, monolayer-scale
spreading film which differs from concentration profiles predicted by current
models. Both the Marangoni ridge and surfactant leading edge can be described
to spread as . We find spreading exponents, and for the ridge peak and
surfactant leading edge, respectively, which are in good agreement with
theoretical predictions of . In addition, we observe that the
surfactant leading edge initially leads the peak of the Marangoni ridge, with
the peak later catching up to the leading edge
- …