747 research outputs found

    Equilibrium ultrastable glasses produced by random pinning

    Full text link
    Ultrastable glasses have risen to prominence due to their potentially useful material properties and the tantalizing possibility of a general method of preparation via vapor deposition. Despite the importance of this novel class of amorphous materials, numerical studies have been scarce because achieving ultrastability in atomistic simulations is an enormous challenge. Here we bypass this difficulty and establish that randomly pinning the position of a small fraction of particles inside an equilibrated supercooled liquid generates ultrastable configurations at essentially no numerical cost, while avoiding undesired structural changes due to the preparation protocol. Building on the analogy with vapor-deposited ultrastable glasses, we study the melting kinetics of these configurations following a sudden temperature jump into the liquid phase. In homogeneous geometries, we find that enhanced kinetic stability is accompanied by large scale dynamic heterogeneity, while a competition between homogeneous and heterogeneous melting is observed when a liquid boundary invades the glass at constant velocity. Our work demonstrates the feasibility of large-scale, atomistically resolved, and experimentally relevant simulations of the kinetics of ultrastable glasses.Comment: 9 pages, 5 figure

    Crossovers in the dynamics of supercooled liquids probed by an amorphous wall

    Full text link
    We study the relaxation dynamics of a binary Lennard-Jones liquid in the presence of an amorphous wall generated from equilibrium particle configurations. In qualitative agreement with the results presented in Nature Phys. {\bf 8}, 164 (2012) for a liquid of harmonic spheres, we find that our binary mixture shows a saturation of the dynamical length scale close to the mode-coupling temperature TcT_c. Furthermore we show that, due to the broken symmetry imposed by the wall, signatures of an additional change in dynamics become apparent at a temperature well above TcT_c. We provide evidence that this modification in the relaxation dynamics occurs at a recently proposed dynamical crossover temperature Ts>TcT_s > T_c, which is related to the breakdown of the Stokes-Einstein relation. We find that this dynamical crossover at TsT_s is also observed for a system of harmonic spheres as well as a WCA liquid, showing that it may be a general feature of glass-forming systems.Comment: 10 pages, 8 figure

    Modern computational studies of the glass transition

    Full text link
    The physics of the glass transition and amorphous materials continues to attract the attention of a wide research community after decades of effort. Supercooled liquids and glasses have been studied numerically since the advent of molecular dynamics and Monte Carlo simulations in the last century. Computer studies have greatly enhanced both experimental discoveries and theoretical developments and constitute an active and continually expanding research field. Our goal in this review is to provide a modern perspective on this area. We describe the need to go beyond canonical methods to attack a problem that is notoriously difficult in terms of time scales, length scales, and physical observables. We first summarise recent algorithmic developments to achieve enhanced sampling and faster equilibration using replica exchange methods, cluster and swap Monte Carlo algorithms, and other techniques. We then review some major recent advances afforded by these novel tools regarding the statistical mechanical description of the liquid-to-glass transition as well as the mechanical, vibrational and thermal properties of the glassy solid. We finally describe some important challenges for future research

    A Molecular Hydrodynamic Theory of Supercooled Liquids and Colloidal Suspensions under Shear

    Full text link
    We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering function is constructed. We evaluate the solution numerically for a model of a two dimensional colloidal suspension and find that the structural relaxation time decreases as γ˙ν\dot{\gamma}^{-\nu} with an exponent ν1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the physical implications of the results.Comment: 5 pages, 1 figur

    Current status and development of the SSO FUN alerts

    No full text
    International audienceThe astrometry mission Gaia of the European Space Agency (ESA) will scan the entire sky several times over 5 years, down to a visual apparent magnitude of 20. Apart for its primary targets, the stars, that will be mapped during the course of the mission, Gaia is expected to observe more than 300,000 asteroids (Mignard et al., 2007). Although our census of asteroids is about complete at a such magnitude limit, the location of Gaia at L2 may allow the detection of yet-unknown near-Earth asteroids (NEAs). The predefined and smooth scanning law of Gaia, however, is not meant for pointed or follow-up observations. A ground-based network of observers has therefore been set up, the Follow-Up Network for the Solar System Objects (FUN SSO), centered around a central node (the DU459 of the Gaia Data Processing and Analysis Consortium, the DPAC). The aim of this network is to quickly observe from the ground the NEAs newly discovered by Gaia to secure an accurate orbit

    The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapor, biogenic O2_2, and O3_3

    Full text link
    The atmospheric composition of transiting exoplanets can be characterized during transit by spectroscopy. For the transit of an Earth twin, models predict that biogenic O2O_2 and O3O_3 should be detectable, as well as water vapour, a molecule linked to habitability as we know it on Earth. The aim is to measure the Earth radius versus wavelength λ\lambda - or the atmosphere thickness h(λ)h(\lambda) - at the highest spectral resolution available to fully characterize the signature of Earth seen as a transiting exoplanet. We present observations of the Moon eclipse of 21-12-2010. Seen from the Moon, the Earth eclipses the Sun and opens access to the Earth atmosphere transmission spectrum. We used HARPS and UVES spectrographs to take penumbra and umbra high-resolution spectra from 3100 to 10400 Ang. A change of the quantity of water vapour above the telescope compromised the quality of the UVES data. We corrected for this effect in the data processing. We analyzed the data by 3 different methods. The 1st method is based on the analysis of pairs of penumbra spectra. The 2nd makes use of a single penumbra spectrum, and the 3rd of all penumbra and umbra spectra. Profiles h(λ)h(\lambda) are obtained with the three methods for both instruments. The 1st method gives the best result, in agreement with a model. The second method seems to be more sensitive to the Doppler shift of solar spectral lines with respect to the telluric lines. The 3rd method makes use of umbra spectra which bias the result, but it can be corrected for this a posteriori from results with the first method. The 3 methods clearly show the spectral signature of the Rayleigh scattering in the Earth atmosphere and the bands of H2_2O, O2_2, and O3_3. Sodium is detected. Assuming no atmospheric perturbations, we show that the E-ELT is theoretically able to detect the O2O_2 A-band in 8~h of integration for an Earth twin at 10pc.Comment: Final version accepted for publication in A&A - 21 pages, 27 figures. Abstract above slightly shortened wrt the original. The ArXiv version has low resolution figures, but a version with full resolution figures is available here: http://www.obs-hp.fr/~larnold/publi_to_download/eclipse2010_AA_v5_final.pd

    Use of green roofs to solve storm water issues at the basin scale – Study in the Hauts-de-Seine County (France)

    Get PDF
    International audienceAt the building scale, green roof has demonstrated a positive impact on urban runoff (decrease in the peak discharge and runoff volume). This work aims to study if similar impacts can be observed at basin scale. It is particularly focused on the possibility to solve some operational issues caused by storm water.For this purpose, a methodology has been proposed. It combines: a method to estimate the maximum roof area that can be covered by green roof, called green roofing potential, and an urban rainfall-runoff model able to simulate the hydrological behaviour of green roof.This methodology was applied to two urban catchments affected one by flooding and the other one by combined sewage overflow. The results show that green roof can reduce the frequency and the magnitude of such problems depending on the covered roof surface. Combined with other infrastructures, they represent an interesting solution for urban water management
    corecore