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Abstract – In Africa, trypanosomosis is a tsetse-transmitted disease which represents the most
important constraint to livestock production. Several indigenous West African taurine (Bos
taurus) breeds, such as the Longhorn (N’Dama) cattle are well known to control trypanosome
infections. This genetic ability named “trypanotolerance” results from various biological mech-
anisms under multigenic control. The methodologies used so far have not succeeded in identify-
ing the complete pool of genes involved in trypanotolerance. New post genomic biotechnologies
such as transcriptome analyses are efficient in characterising the pool of genes involved in the
expression of specific biological functions. We used the serial analysis of gene expression
(SAGE) technique to construct, from Peripheral Blood Mononuclear Cells of an N’Dama
cow, 2 total mRNA transcript libraries, at day 0 of a Trypanosoma congolense experimental
infection and at day 10 post-infection, corresponding to the peak of parasitaemia. Bioinformatic
comparisons in the bovine genomic databases allowed the identification of 187 up- and down-
regulated genes, EST and unknown functional genes. Identification of the genes involved in
trypanotolerance will allow to set up specific microarray sets for further metabolic and pharma-
cological studies and to design field marker-assisted selection by introgression programmes.

SAGE / trypanotolerance / N’Dama / Trypanosoma congolense / transcriptomics

1. INTRODUCTION

In central and sub-Saharan Africa, the most important constraint to livestock
production is trypanosomosis. This tsetse-transmitted disease represents an
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important risk for about 60 million cattle and it strongly affects their productiv-
ity (milk, meat, fertility, pulling...) on 7 million km2 spread over 37 countries.
Animal trypanotolerance is the genetic ability of some breeds from several
mammalian species (such as cattle, small ruminants, pigs, wild buffaloes
and antelopes...) to live normally and remain productive in tsetse-infested
areas [12]. This phenomenon was described in Africa as early as the beginning
of the XXth century [4,6,7,29,33,35]. Trypanotolerance results from various
biological mechanisms under multigenic control, which relate either to the
control of trypanosome infection, as measured by parasitemia [10,13,22,34],
or the control of the pathogenic effects of the parasites, the most prominent
of which is anaemia [1,36–38]. Two different pools of genes are probably
involved in determining the two characteristics and the various methodologies
used so far have not succeeded in identifying them. Neither zootechnical
studies [8,9,16,15,23], nor quantitative genetics approaches [39], nor the
electrophoretic analysis of targeted proteins [32,31], nor MHC typing [21]
have brought significant progress on the trypanotolerance understanding. QTL
studies developed more recently, firstly on mice [17–19] then on bovine [14]
give some more interesting results but they are restricted to small parts of the
cattle genome. Considering the limited number of experimental animals used,
the confidence interval of the bovine QTLs is too wide to be useful in a marker
assisted selection (MAS) programme, or in a positional candidate approach.
The homologous comparison between the mouse and bovine genomes is limited
and there is no proof that the same genes are involved in the two species.
Finally, the QTL approach could give information on genes involved in the
innate immunity but not on those controlling the acquired immunity, both gene
types being involved in the global trypanotolerance mechanisms. Furthermore
the crossbreeding plan to study the QTL segregation on bovines is very long
and expensive. Several recent biotechnologies allow exhaustive functional
analysis using a transcriptomic approach which is efficient to characterise the
full complex of genes involved in the expression of specific biological functions.
Amongst them, the serial analysis of gene expression (SAGE), which we used in
the present work, will allow to compare up- and down- regulated genes involved
in the control of Trypanosoma congolense infection in N’Dama cattle.

2. MATERIALS AND METHODS

2.1. Experimental animals and design

We used one animal of the N’Dama breed which is a Longhorn indigenous
West African taurine (Bos Taurus) well known to be resistant to trypanosomosis
infection. This animal was taken in the field from a highly tsetse infected area.
A serological control allowed to verify the presence of specific T. congolense
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Figure 1. Evolution of parasitaemia in an N’Dama animal after a Trypanosoma
congolense experimental infection. The arrows (↑↑↑) indicate the time when blood
was sampled to constitute the D0L (Day 0) and MPL (Day 10) SAGE libraries.

antibodies. Before the beginning of the experiment, this animal was treated
against blood parasites (Veriben: diminazene aceturate, 7 mg · kg−1) and
gastrointestinal parasites (Vermitan: albendazole, 7.5 mg · kg−1). After a
few days of resting, a first blood sampling was done using a PAXgene Blood
RNA tube (Quiagen, cat. No 762125) which contains a total RNA conservation
medium. This first blood sample at day 0 was used to develop the first reference
SAGE library (D0L) from total white blood cells. Then the experimental design
consisted in a Trypanosoma congolense infection (Ser/71/STIB/212) using a
unique syringe inoculation of 8× 105 parasites [11,25,27,28]. Each couple of
days, a blood parasitological control on the buffy coat allowed to check for the
presence of the parasites and to follow the kinetics of their development (Fig. 1).
The second blood sampling was done to develop the second reference SAGE
library (MPL) at the peak of parasitaemia which appeared at day 10. These
two D0L and MPL SAGE libraries were used in a differential comparison
of expressed genes in this N’Dama animal before and after a T. congolense
infection.

2.2. The SAGE method

The serial analysis of gene expression (SAGE) technique [3,40,41] enhances
the power and the swiftness of transcriptome analysis. SAGE generates com-
plete expression profiles of tissues or cell lines and the results are quantitative
and absolute. The principle of this technique consists in the construction
of total mRNA libraries for a quantitative analysis of the whole transcripts
expressed or inactivated at particular steps of a cellular activation. It is based
on three principles: (i) a short sequence tag (9–14 bp) obtained from a defined
region within each mRNA transcript contains sufficient information to uniquely
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identify one specific transcript; (ii) sequence tags can be linked together to
form long DNA molecules (concatemers) that can be cloned and sequenced.
Sequencing of the concatemer clones results in the quick identification of
numerous individual tags; (iii) the expression level of the transcript is quantified
by the number of times a particular tag is observed.

We used the I-SAGETM kit from Invitrogen (cat. No T5000–01) to develop
our 2 D0L and MPL transcript libraries.

Bioinformatic comparisons [30] in several genomic databases (Unigen, Tigr)
allowed firstly to identify the different activated and inactivated tags (known
genes, EST or unknown genes) and secondly to compare their respective
frequencies in both D0L and MPL libraries.

3. RESULTS

The analyses of the whole identified tags are summarised in Table I.
From 4763 sequenced tags, we identified 2281 distinct transcripts, 187 of

them being differentially expressed in both D0L and MPL libraries. The rates
of contamination by linker sequences were non-significant. Repeated ditags
(not taken into account for the measurement of expression levels) represented
1.3% of the total ditag population, revealing a high complexity of the original
mRNA population.

The tags showing the most significant differences in frequencies (P < 0.001)
between both D0L and MPL libraries are separately presented for the up
(Tab. II) and the down (Tab. III) regulated transcripts.

A different interesting presentation of these results is given in a graphical
scatter plot (Fig. 2) where each dot represents a particular tag.

Table I. Statistics of tag distribution.

Totally sequenced tags 4763

Different tags 2281

Genes 386

cDNA/EST 920

No Match 975

Tags differentially expressed (P < 0.001) 187

Genes 92

cDNA/EST 23

No Match 72

“Genes” are tags matching with well identified genes; “cDNA/EST” are
tags matching with anonymous described sequences; “no match”are tags
failing to match with SAGEmap (rank 1 or 2) or UniGene sequences.
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Table II. Expression of UP-regulated transcripts. (D0L): day 0 non infected library;
(MPL): maximum parasitaemia library; (Id.): databases accession number; No Match:
unknown genes. Significance of differences between D0L and MPL tags listed is at
least P < 0.05.

Tags D0L MPL Id. Names
Immunity proteins
CATGGACCCCTGAG 27 99 Bt.100316 Immunoglobulin light chain mRNA
CATGGAGCCCGCAG 0 24 TC132989 Ig M heavy chain constant region, membrane

form
CATGAGTGCAGACT 13 18 TC132990 Ig M heavy chain constant region, secretory

form
CATGGGCGTCTCTG 0 3 TC124168 Ig G3 heavy chain constant region
CATGGCCACTTAGT 0 12 Bt100505 B-cell antigen receptor mRNA
CATGTGAGGGTGCC 0 4 TC133149 T-cell receptor beta 1, constant region
CATGGATCTGGCTG 0 3 Bt.506 MHC class II BoLA-DBQ-chain mRNA
Other genes
CATGTGACACGTAT 0 32 TC133213 NADH – ubiquinone - oxidoreductase chain 1
CATGGGCTGGGGGC 0 20 TC132831 PRO1_BOVIN Profilin I. [Bovine]
CATGCTGGGAAATT 0 13 TC132798 ORF
CATGCATATTTGGG 0 14 Bt100010 Ferritin H subunit mRNA
CATGACAACACATA 67 119 Bt.5174 Inositol polyphosphate 1-phosphatase
CATGAGGAAAGCGG 0 13 TC142407 Homologue to CDH1-D {Gallus gallus}
CATGCAGCTCCGCG 0 13 Bt.697 Cdc42-associated tyrosine kinase ACK-2

mRNA
CATGTGAGAACATT 0 12 TC132773 Actin
CATGGACCCCTTTT 0 11 TC132770 Beta actin
CATGTTGTCTGTCT 0 11 TC132625 HSHU33histone H3.3 [validated] -
CATGAGTCCAAGCC 0 11 TC143154 Similar to SDHL_HUMAN L-serine

dehydratase [Human]
CATGAAGGTAATAA 0 10 TC132804 CChain C Crystal Structure Of Arp23

COMPLEX,
CATGTGTGTCTGTA 0 9 TC123714 TBA1_CRIGRTubulin alpha-1 chain.

[Chinese hamster]
Ribosomal
CATGTAAGGATCCA 0 20 TC124043 RS26_HUMAN40S ribosomal protein S26.

[Rat]
CATGCTCACCAATA 13 46 Bt.101746 Ribosomal protein (QM) mRNA
CATGGGCTTCGGCT 0 14 Bt101531 Acidic ribosomal protein P2 mRNA
CATGCTGTTGGTGA 0 9 TC132795 RS23_HUMAN40S ribosomal protein S23.

[Rat]
CATGAGGAAAGCGG 0 13 TC141303 Ribosomal protein L36
EST
CATGTTGCATTACC 0 28 TC133588 EST
CATGGAGGAGGAAG 0 19 Bt.116903 EST - 211333 Bos taurus cDNA
CATGAAGCCCAGCG 0 15 Bt.95263 EST - AV662735 Bos taurus cDNA
CATGGGCTGGGGCT 0 14 TC142538 EST
CATGGCCACAGCCA 0 10 Bt77418 EST - AV603489 Bos taurus cDNA
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Table III. Expression of DOWN-regulated transcripts. (D0L): day 0 non infected
library; (MPL): maximum parasitaemia library; (Id.): databases accession number;
No Match: unknown gene. Significance of differences between D0L and MPL tags
listed is at least P < 0.05. (continued on the next page)

Tags D0L MPL Id. Names
Immunity proteins
CATGGCTAAGCCTA 241 74 TC142442 BOVIN Beta-2-microglobulin precursor,

Lactollin
CATGTTACCATAAA 13 1 Bt.100131 B.taurus mRNA for beta 2-microglobulin
CATGAGGAGTTGGG 40 20 TC133042 MHC class I heavy chain
CATGGCGCCCCTTC 27 17 Bt.100356 B.taurus mRNA for MHC class 1 (clone 6)
CATGGGCATCATTG 27 16 Bt.100358 B.taurus MHC class 1 protein molecule D18.1
CATGTCAAGGCAAT 13 1 TC144589 MHC class II DM alpha-chain MHC class II

antigen
CATGTAATGCCTTT 13 8 Bt.101032 Bovine BoLA-DRA mRNA for MHC class II

BoLA-DR-alpha
CATGGAAGCAATAA 13 7 TC133143 MHC class II antigen [Bos taurus]
Other genes
CATGAATAAAGTGC 54 8 TC143206 glutathione peroxidase (AA 1–204)
CATGTACGAGAAAG 27 1 Bt.1316 B.taurus mitochondrial aspartate

aminotransferase
CATGCCTCGACGAT 40 11 TC132812 cytochrome oxidase subunit[Bos taurus]
CATGCAAAGGAGAT 13 1 Bt.100650 Bovine ATP synthase inhibitor protein mRNA
CATGTAATAAAGCA 13 1 TC125185 seryl-tRNA synthetase
CATGTTAATCCTAA 13 1 Bt.5517 Bovine mRNA for retinal 2′.3′-cyclic

nucle.3′-phospha
CATGCAAATAAAAA 13 1 Bt.100227 Bovine mRNA for beta-crystallin subunit beta

B1
CATGCTAATTATAA 13 1 TC124062 4L NADH dehydrogenase subunit 4L [Bos

taurus]
CATGCCGGCCCAGA 13 1 TC142818 Homologue to KCRB_CANFA Creatine

kinase B chain. [Dog]
CATGTGTACCTTTT 13 1 TC143287 COPA_BOVIN Coatomer alpha subunit

(Alpha-coat protein)
CATGGCCTGATGGG 94 51 TC133123 BAB22470.putative {Mus musculus}
CATGGGAGAAGGGT 13 1 TC142585 Similar to BAB28161. putative {Mus

musculus}
Ribosomal
CATGCACAAACAGT 40 2 TC124028 Homologue to ribosomal protein S27

cytosolic - human
CATGTGGTGTTGAG 40 8 TC123562 RS18_HUMAN40S ribosomal protein S18

(KE-3)
CATGGAACATATCC 13 1 TC132800 60S ribosomal protein L19. [Mouse] {Mus

musculus}
CATGGCAGAGTTCG 13 1 TC132832 RS6_HUMAN40S ribosomal protein S6,

Rattus norvegicus
CATGTGAAAGATGC 13 1 TC142426 ribosomal protein S4
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Table III. Continued.

Tags D0L MPL Id. Names

EST
CATGTAGGTTGTCT 228 107 BE236829 EST
CATGCATTCTAGAG 27 0 BF890336 EST
CATGTGAAAAAAAA 27 0 Bt.57839 EST - 170434 Bos taurus cDNA
CATGTTAATAAAAA 27 2 Bt.127590 EST - Bos taurus cDNA
CATGCGGTCAGCCA 27 3 BI540074 EST
CATGATTCTTTGGT 40 9 Bt.209523 EST - Bos taurus cDNA
CATGAACAGAGGAG 13 1 BM431775 EST
CATGGAGAAATATC 13 1 Bt.185285 EST - Bos taurus cDNA
CATGAGTTTGCCCT 13 1 Bt.6126 EST
CATGCAGCAGAAGC 13 1 Bt.95810 EST - Bos taurus cDNA
CATGAACAGAGGAG 13 1 AW463909 EST
CATGCATAAAGGAA 13 1 Bt.215670 EST - Bos taurus cDNA
CATGAACAGAGGAG 13 1 BM482666 EST
CATGCCGACGGGCG 13 1 TC123808 EST
CATGGCTGGCCTGC 13 1 TC136232 EST

Unknown
CATGGTACATAGAC 27 0 No Match
CATGTGCTTGTCGG 13 1 No Match
CATGGTGTGATGCT 13 1 No Match
CATGTGAGAAGTCG 13 1 No Match
CATGATGAACCCTG 13 1 No Match
CATGTTTGTCATCT 13 1 No Match
CATGCAGCAAGGAA 13 1 No Match
CATGTCGGCTTCTA 13 1 No Match
CATGGTATTTGCAA 13 1 No Match

Several dots correspond to known genes (immunoglobulins, B and T cell
receptors, interleukins, MHC Bola class I and II, metabolic and ribosomal
proteins...) or EST but others correspond to unknown genes. These unknown
genes could come from the N’Dama mRNA but they could also come, to a small
extent, from mRNA of T. congolense parasites. To validate this hypothesis,
we did another bioinformatic comparison of these whole no-match tags with
the two available existing Trypanosoma genome databases (T. brucei and T.
cruzi). We identified 5 expressed genes actually coming from the Trypanosoma
congolense genome, and which are probably ubiquitous in the Trypanosoma
genus (Tab. IV).

This result opens a very interesting way to study the interactive mechanisms
at the host-parasite interface by a parallel comparison of the parasite and the
host SAGE libraries.
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Figure 2. Comparative levels of expression in the T0 non-infected library (D0L) and
in the maximum parasitaemia library (MPL). The number of occurrences of each tag
was plotted on a logarithmic scale. The number of occurrences was set to one for tags
with no expression in one library. Statistical significances of tag frequency differences
(N): P < 0.001; (�): 0.001 < P < 0.01; (◦): P > 0.01.

Table IV. Expression of up-regulated Trypanosoma congolense transcripts. (D0L):
day 0 non infected library; (MPL): maximum parasitaemia library; (Id.): databases
reference.

Tags D0L MPL Names Id.

CATGCCACACAAGC 0 1 TCJ3 PROTEIN. 241 3e-62 CONTIG6688

CATGTGTCACCCAC 0 1 SEPTATION. 119 8e-26 CONTIG9150

CATGGGACTTGGAC 0 1 RIBONUCLEOSIDE-DIPHOSPHATE
R... 293 2e-78

EM_NEW :AL473377

CATGTGTGTCTGTG 0 1 PROTEIN PHOSPHATASE-2C.
203 2e-51

EM_NEW :AL457897

CATGTTGCTGTGTG 0 2 POSSIBLE AMINO ACID
TRANSPORTER. 164 7e-77

CONTIG9490
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4. DISCUSSION

Amongst the 187 regulated tags, from the pool of up-regulated transcripts
(Tab. II), we found several genes involved in the immune mechanisms which
confirm several previous immunological results [2]. The most activated genes
were those encoding different chains of immunoglobulin (IgG and IgM)
molecules. This confirms their important role in the immune mechanisms
involved in the control of trypanosome infections. Indeed, the literature on this
topic [2,5,6,13,20,26] is rich of corroborating results indicating that, except
for primo-infection [24], the ability of resistant animals to control parasitaemia
is due to a more efficient specific antibody response. The T-independent
responses producing IgM antibodies are sufficient to control the parasitaemia,
and the IgM are more efficient than the IgG as neutralising antibodies at the
beginning of the infection [20]. The increase of the serological IgM level
and the parasitaemia appearance are simultaneous while the IgG antibodies
generally appear later. The IgM are mainly directed to the parasite surface
antigens while the IgG are generally directed to the internal antigens [5]. It has
often been reported [22] that the trypanosomes are responsible for B and T cells
polyclonal proliferation. We confirmed the activation of the genes encoding
the B and T cell receptors (Tab. II). Furthermore, the T cell receptor beta
cluster is located in the bovine chromosome 4 (Bta4) in the 4q3.1 and 4q3.6
region (IDVGA51-TGLA159/MGTG4B) where Hanotte et al. [14] described a
QTL strongly associated with the fewer parasites trait (PARMLn) in N’Dama.
We also found genes encoding cytokines such as interleukins (IL1 and IL10R)
confirming their role in the induction of a cell polyclonal activation, particularly
for IgM antibodies [26]. Finally, MHC class II BoLA-DQB genes seemed to be
activated (Tab. II) while other MHC genes of class I and class II (BoLA-DRA and
BoLA-DMA) seemed to be down-regulated (Tab. III). Apart from molecules of
the immune system, we identified several genes involved in different up- and
down- regulated metabolic pathways (such as the NADH-ubiquinone oxidore-
ductase chain 1, the bovine profilin or the glutathione peroxidase). Several
ribosomal genes were also regulated. Within regulated EST, one up-regulated
(TC133588) and 3 down-regulated (BE236829, BF890336, Bt. 57839) EST
are of interest, but further developments of the bovine map will be needed to
clearly identify these EST. Concerning the up- and down- regulated unknown
tags, they can be spotted on microarrays for further applications.

These preliminary results obtained on a single experimental N’Dama animal
need to be reproduced at least on another individual of this breed. To identify the
genes implicated in the trypanotolerance mechanisms, we need to implement
similar differential analysis at least on two individuals from several other
cattle breeds: the trypanotolerant breed (Bos taurus), such as Baoule, and
the trypanosusceptible zebu breed (Bos indicus). The comparison of the results
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obtained on the different trypanotolerant and trypanosusceptible cattle will
allow to differentially identify the pool of genes specifically involved in the
control of parasitaemia. Also, the kinetics of the package cell volume (PCV)
should be monitored in order to collect blood samples for SAGE libraries at
the precise time when the PCV increases as a result of efficient mechanisms
of anaemia control. This would lead to the constitution of two global pools
of genes involved in the trypanotolerance genetic character, either through the
control of parasitemia and/or the control of anaemia, to set up field marker
assisted selection and specific microarrays for further metabolic and pharma-
cological studies. Finally, these results could be compared with those of the
QTL approach for cross validation and to identify positional candidate genes
useful for future selection/introgression programmes in different cattle breeds.

The comparative SAGE libraries applied to the Trypanosoma congolense
parasite should also allow for the identification of parasite genes that are
specifically up- and/or down-regulated by the host defence mechanisms, with
interesting consequences for drug development against animal and human
trypanosomoses.
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