11 research outputs found
RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose
FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose.We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering
Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone
Dynamic regulation of DELLA protein activity: SPINDLY and SECRET AGENT unmasked!
International audienc
ELF3-PIF4 Interaction Regulates Plant Growth Independently of The Evening Complex
International audienc
Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron deficiency responses
International audienc
Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T
Ectopic expression of specific genes in seeds could be a tool for molecular design of crops to alter seed dormancy and germination, thereby improving production. Here, a seed-specific vector, 12S-pLEELA, was applied to study the roles of genes in Arabidopsis seeds. Transgenic lines containing FLOWERING LOCUS T (FT) driven by the 12S promoter exhibited significantly increased seed dormancy and earlier flowering. Mutated FT(Y85H) and TERMINAL FLOWER1 (TFL1) transgenic lines also showed increased seed dormancy but without altered flowering time. FT(Y85H) and TFL1 caused weaker seed dormancy enhancement compared to FT. The FT and TFL1 transgenic lines showed hypersensitivity to paclobutrazol, but not to abscisic acid in seed germination. The levels of bioactive gibberellin 3 (GA(3)) and GA(4) were significantly reduced, consistent with decreased expression of COPALYL DIPHOSPHATE SYNTHASE (CPS), KAURENE OXIDASE (KO), GIBBERELLIN 3-OXIDASE2 (GA3ox2), and GA20ox1 in p12S::FT lines. Exogenous GA(4+7) could recover the germination ability of FT transgenic lines. These results revealed that FT regulates GA biosynthesis. A genetic analysis indicated that the GA signaling regulator SPINDLY (SPY) is epistatic to FT in GA-mediated seed germination. Furthermore, DELAY OF GERMINATION1 (DOG1) showed significantly higher transcript levels in p12S::FT lines. Seed dormancy analysis of dog1-2 spy-3 p12S::FT-2 indicated that the combination of SPY and DOG1 is epistatic to FT in the regulation of dormancy. Overall, we showed that ectopic expression of FT and TFL1 in seeds enhances dormancy through affecting GA and DOG1 pathways