17,852 research outputs found

    The Coronal Analysis of SHocks and Waves (CASHeW) Framework

    Full text link
    Coronal Bright Fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed in extreme ultraviolet (EUV) light as transient bright fronts of finite width, propagating away from the eruption source. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between low coronal waves and coronal mass ejection (CME)-driven shocks. EUV imaging with the Atmospheric Imaging Assembly(AIA) instrument on the Solar Dynamics Observatory (SDO) has proven particularly useful for detecting CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the Coronal Analysis of SHocks and Waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the Interactive Data Language (IDL). In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC

    A middleware for a large array of cameras

    Get PDF
    Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents

    A Proof of Tarski’s Fixed Point Theorem by Application of Galois Connections

    Get PDF
    Two examples of Galois connections and their dual forms are considered. One of them is applied to formulate a criterion when a given subset of a complete lattice forms a complete lattice. The second, closely related to the first, is used to prove in a short way the Knaster-Tarski’s fixed point theore

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    Deceleration and Dispersion of Large-scale Coronal Bright Fronts

    Full text link
    One of the most dramatic manifestations of solar activity are large-scale coronal bright fronts (CBFs) observed in extreme ultraviolet (EUV) images of the solar atmosphere. To date, the energetics and kinematics of CBFs remain poorly understood, due to the low image cadence and sensitivity of previous EUV imagers and the limited methods used to extract the features. In this paper, the trajectory and morphology of CBFs was determined in order to investigate the varying properties of a sample of CBFs, including their kinematics and pulse shape, dispersion, and dissipation. We have developed a semi-automatic intensity profiling technique to extract the morphology and accurate positions of CBFs in 2.5-10 min cadence images from STEREO/EUVI. The technique was applied to sequences of 171A and 195A images from STEREO/EUVI in order to measure the wave properties of four separate CBF events. Following launch at velocities of ~240-450kms^{-1} each of the four events studied showed significant negative acceleration ranging from ~ -290 to -60ms^{-2}. The CBF spatial and temporal widths were found to increase from ~50 Mm to ~200 Mm and ~100 s to ~1500 s respectively, suggesting that they are dispersive in nature. The variation in position-angle averaged pulse-integrated intensity with propagation shows no clear trend across the four events studied. These results are most consistent with CBFs being dispersive magnetoacoustic waves.Comment: 15 pages, 18 figure

    A feasibility study of signed consent for the collection of patient identifiable information for a national paediatric clinical audit database

    Get PDF
    Objectives: To investigate the feasibility of obtaining signed consent for submission of patient identifiable data to a national clinical audit database and to identify factors influencing the consent process and its success. Design: Feasibility study. Setting: Seven paediatric intensive care units in England. Participants: Parents/guardians of patients, or patients aged 12-16 years old, approached consecutively over three months for signed consent for submission of patient identifiable data to the national clinical audit database the Paediatric Intensive Care Audit Network (PICANet). Main outcome measures: The numbers and proportions of admissions for which signed consent was given, refused, or not obtained (form not returned or form partially completed but not signed), by age, sex, level of deprivation, ethnicity (South Asian or not), paediatric index of mortality score, length of hospital stay (days in paediatric intensive care). Results: One unit did not start and one did not fully implement the protocol, so analysis excluded these two units. Consent was obtained for 182 of 422 admissions (43%) (range by unit 9% to 84%). Most (101/182; 55%) consents were taken by staff nurses. One refusal (0.2%) was received. Consent rates were significantly better for children who were more severely ill on admission and for hospital stays of six days or more, and significantly poorer for children aged 10-14 years. Long hospital stays and children aged 10-14 years remained significant in a stepwise regression model of the factors that were significant in the univariate model. Conclusion: Systematically obtaining individual signed consent for sharing patient identifiable information with an externally located clinical audit database is difficult. Obtaining such consent is unlikely to be successful unless additional resources are specifically allocated to training, staff time, and administrative support
    corecore