774 research outputs found

    Regrowth resistance: low-level platinum resistance mediated by rapid recovery from platinum-induced cell-cycle arrest

    Get PDF
    The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum drug resistance developed from H69 human small cell lung cancer cells with eight 4-day treatments of 200 ng/ml cisplatin or 400 ng/ml oxaliplatin respectively. A recovery period was given between treatments to emulate the cycles of chemotherapy given in the clinic. The resistant cell lines were approximately 2-fold resistant to cisplatin and oxaliplatin and were cross resistant to both drugs. Platinum resistance was not associated with increased cellular glutathione, decreased accumulation of platinum or increased DNA repair capacity. The H69 platinum sensitive cells entered a lengthy 3 week growth arrest in response to low-level cisplatin or oxaliplatin treatment. This is an example of the coordinated response between the cell cycle and DNA repair. In contrast the H69CIS200 and H69OX400 cells have an alteration in the cell cycle allowing them to rapidly proliferate post drug treatment. The resistant cell lines also have many chromosomal rearrangements most of which are not associated with the resistant phenotype, suggesting an increase in genomic instability in the resistant cell lines. We hypothesised that there was a lack of coordination between the cell cycle and DNA repair in the resistant cell lines allowing proliferation in the presence of DNA damage which has created an increase in genomic instability. The H69 cells and resistant cell lines have mutant p53 and consequently decrease the expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed with the platinum induced cell cycle arrest and did not correlate with resistance or altered DNA repair capacity. These changes may in part be mediating and maintaining the cell cycle arrest in place of p21.The rapidly proliferating resistant cells have restored the levels of both these proteins to their levels in untreated cells. We use the term ‘regrowth resistance’ to describe this low-level platinum resistance where cells survive treatment through increased proliferation. Regrowth resistance may play a role in the onset of clinical resistance

    A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship

    Get PDF
    We undertook a systematic review of the pre-clinical and clinical literature for studies investigating the relationship between platinum and taxane resistance. Medline was searched for 1) cell models of acquired drug resistance reporting platinum and taxane sensitivities and 2) clinical trials of platinum or taxane salvage therapy in ovarian cancer. 137 models of acquired drug resistance were identified. 68.1% of cisplatin-resistant cells were sensitive to paclitaxel and 66.7% of paclitaxel-resistant cells were sensitive to cisplatin. A similar inverse pattern was observed for cisplatin vs docetaxel, carboplatin vs paclitaxel and carboplatin vs docetaxel. These associations were independent of cancer type, agents used to develop resistance and reported mechanisms of resistance. 65 eligible clinical trials of paclitaxel-based salvage after platinum therapy were identified. Studies of single agent paclitaxel in platinum-resistant ovarian cancer where patients had previously recieved paclitaxel had a pooled response rate of 35.3% n=232, compared to 22% in paclitaxel naïve patients n=1918 (p<0.01 Chi-squared). Suggesting that pre-treatment with paclitaxel may improve the response of salvage paclitaxel therapy. The response rate to paclitaxel/platinum combination regimens in platinum-sensitive ovarian cancer was 79.5% n=88 compared to 49.4% n=85 for paclitaxel combined with other agents (p<0.001 Chi-squared), suggesting a positive interaction between taxanes and platinum. Therefore the inverse relationship between platinum and taxanes resistance seen in cell models is mirrored in the clinical response to these agents in ovarian cancer. An understanding of the cellular and molecular mechanisms responsible would be valuable in predicting response to salvage chemotherapy and may identify new therapeutic targets

    A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1

    Get PDF
    A systematic review of cell models of acquired drug resistance not involving genetic manipulation showed that 80% of cell models had an inverse resistance relationship between cisplatin and paclitaxel[1]. Here we systematically review genetically modified cell lines in which the inverse cisplatin/paclitaxel resistance phenotype has resulted. This will form a short list of genes which may play a role in the mechanism of the inverse resistance relationship as well as potential markers for monitoring the development of resistance in the clinical treatment of cancer. The literature search revealed 91 genetically modified cell lines which report toxicity or viability/apoptosis data for cisplatin and paclitaxel relative to their parental cell lines. This resulted in 26 genes being associated with the inverse cisplatin/paclitaxel phenotype. The gene with the highest number of genetically modified cell lines associated with the inverse resistance relationship was BRCA1 and this gene is discussed in detail with reference to chemotherapy response in cell lines and in the clinical treatment of breast, ovarian and lung cancer. Other genes associated with the inverse resistance phenotype included dihydrodiol dehydrogenase (DDH) and P-glycoprotein. Genes which caused cross resistance or cross sensitivity between cisplatin and paclitaxel were also examined, the majority of these genes were apoptosis associated genes which may be useful for predicting cross resistance. We propose that BRCA1 should be the first of a panel of cellular markers to predict the inverse cisplatin/paclitaxel resistance phenotype

    Dualizability of automatic algebras

    Full text link
    We make a start on one of George McNulty's Dozen Easy Problems: "Which finite automatic algebras are dualizable?" We give some necessary and some sufficient conditions for dualizability. For example, we prove that a finite automatic algebra is dualizable if its letters act as an abelian group of permutations on its states. To illustrate the potential difficulty of the general problem, we exhibit an infinite ascending chain A1A2A3...b\mathbf A_1 \le \mathbf A_2 \le \mathbf A_3 \le ...b of finite automatic algebras that are alternately dualizable and non-dualizable

    A 39 kDa fragment of endogenous ASK1 suggests specific cleavage not degradation by the proteasome

    Get PDF
    Transfected human apoptosis signal-regulating kinase 1 (ASK1) produces a 150 kDa protein. However, we have detected endogenous ASK1 predominantly as 39 and 50 kDa C-terminal and 75 and 110 kDa N-terminal fragments in a panel of nontransfected cancer cell lines and HUVEC endothelial cells. This suggests that in nonapoptotic cells, endogenous ASK1 protein is normally cleaved at a number of specific sites, some of which are in the kinase domain. Transfected ASK1 protein is known to be degraded by the proteasome. In contrast, the cleavage of endogenous ASK1 is independent of the proteasome as treatment with the proteasome inhibitor, lactacystin did not inhibit cleavage. Cisplatin treatment decreased the amount of 39 kDa C-terminal ASK1 fragments in mutant p53 cell lines suggesting a decrease in cleavage associated with apoptosis. Transfected ASK1 may, therefore, not accurately reflect the role of endogenous ASK1

    Differential effects of RGS proteins on Gαq and Gα11 activity

    Get PDF
    Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human Gαq and Gα11 spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of Gα-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both Gαq and Gα11 but, in contrast, RGS5 and RGS16 were much less effective against Gα11 than Gαq. Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active Gαq QL/Gα11 QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-Gα specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of Gαq/Gα11 enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both Gα subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential Gα activity, further highlighting that RGS proteins can discriminate between two very closely related Gα subunits

    A 39kDa FRAGMENT OF ENDOGENOUS ASK1 SUGGESTS SPECIFIC CLEAVAGE NOT DEGRADATION BY THE PROTEASOME

    Get PDF
    Abstract Transfected human ASK1 produces a 150kDa protein. However, we have detected endogenous ASK1 predominantly as 39kDa and 50kDa C-terminal and 75kDa and 110kDa N-terminal fragments in a panel of non-transfected cancer cell lines and HUVEC endothelial cells. This suggests that in non-apoptotic cells, endogenous ASK1 protein is normally cleaved at a number of specific sites, some of which are in the kinase domain. Transfected ASK1 protein is known to be degraded by the proteasome. In contrast, the cleavage of endogenous ASK1 is independent of the proteasome as treatment with the proteasome inhibitor, lactacystin did not inhibit cleavage. Cisplatin treatment decreased the amount of 39kDa C-terminal ASK1 fragment in mutant p53 cell lines suggesting a decrease in cleavage associated with apoptosis. Transfected ASK1 may therefore not accurately reflect the role of endogenous ASK1.
    corecore