32 research outputs found

    Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes

    Get PDF
    Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32+/-6g versus 27+/-6g, p<0.01) and larger RV stroke volume index (71+/-10ml versus 64+/-10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation

    Isoproterenol Induces Vascular Oxidative Stress and Endothelial Dysfunction via a Gi alpha-Coupled beta(2)-Adrenoceptor Signaling Pathway

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Objective: Sustained beta-adrenergic stimulation is a hallmark of sympathetic hyperactivity in cardiovascular diseases. It is associated with oxidative stress and altered vasoconstrictor tone. This study investigated the beta-adrenoceptor subtype and the signaling pathways implicated in the vascular effects of b-adrenoceptor overactivation. Methods and Results: Mice lacking the beta(1)- or beta(2)-adrenoceptor subtype (beta 1KO, beta 2KO) and wild-type (WT) were treated with isoproterenol (ISO, 15 mu g.g(-1). day(-1), 7 days). ISO significantly enhanced the maximal vasoconstrictor response (Emax) of the aorta to phenylephrine in WT (+34%) and beta 1KO mice (+35%) but not in beta 2KO mice. The nitric oxide synthase (NOS) inhibitor L-NAME abolished the differences in phenylephrine response between the groups, suggesting that ISO impaired basal NO availability in the aorta of WT and beta 1KO mice. Superoxide dismutase (SOD), pertussis toxin (PTx) or PD 98,059 (p-ERK 1/2 inhibitor) incubation reversed the hypercontractility of aortic rings from ISO-treated WT mice; aortic contraction of ISO-treated beta 2KO mice was not altered. Immunoblotting revealed increased aortic expression of Gi alpha-3 protein (+50%) and phosphorylated ERK1/2 (+90%) and decreased eNOS dimer/monomer ratio in ISO-treated WT mice. ISO enhanced the fluorescence response to dihydroethidium (+100%) in aortas from WT mice, indicating oxidative stress that was normalized by SOD, PTx and L-NAME. The ISO effects were abolished in beta 2KO mice. Conclusions: The beta(2)-adrenoceptor/Gi alpha signaling pathway is implicated in the enhanced vasoconstrictor response and eNOS uncoupling-mediated oxidative stress due to ISO treatment. Thus, long-term beta(2)-AR activation might results in endothelial dysfunction.93Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Cell therapy prevents structural, functional and molecular remodeling of remote non-infarcted myocardium

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Background/objectives: Therapy using bone marrow (BM) cells has been tested experimentally and clinically due to the potential ability to restore cardiac function by regenerating lost myocytes or increasing the survival of tissues at risk after myocardial infarction (MI). In this study we aimed to evaluate whether BM-derived mononuclear cell (MNC) implantation can positively influence the post-MI structural remodeling, contractility and Ca(2+)-handling proteins of the remote non-infarcted tissue in rats. Methods and results: After 48 h of MI induction, saline or BM-MNC were injected. Six weeks later, MI scars were slightly smaller and thicker, and cardiac dilatation was just partially prevented by cell therapy. However, the cardiac performance under hemodynamic stress was totally preserved in the BM-MNC treated group if compared to the untreated group, associated with normal contractility of remote myocardium as analyzed in vitro. The impaired post-rest potentiation of contractile force, associated with decreased protein expression of the sarcoplasmic reticulum Ca2+-ATPase and phosphorylated-phospholamban and overexpression of Na(+)/Ca(2+) exchanger, were prevented by BM-MNC, indicating preservation of the Ca(2+) handling. Finally, pathological changes on remodeled remote tissue such as myocyte hypertrophy, interstitial fibrosis and capillary rarefaction were also mitigated by cell therapy. Conclusions: BM-MNC therapy was able to prevent cardiac structural and molecular remodeling after MI, avoiding pathological changes on Ca(2+)-handling proteins and preserving contractile behavior of the viable myocardium, which could be the major contributor to the improvements of global cardiac performance after cell transplantation despite that scar tissue still exists. (C) 2013 Elsevier Ireland Ltd. All rights reserved.168438293836Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore