5 research outputs found

    The use of 2-D speckle tracking echocardiography in assessing adolescent athletes with left ventricular hypertrabeculation meeting the criteria for left ventricular non-compaction cardiomyopathy

    Get PDF
    BACKGROUND: Current echocardiographic criteria cannot accurately differentiate exercise induced left ventricular (LV) hypertrabeculation in athletes from LV non-compaction cardiomyopathy (LVNC). This study aims to evaluate the role of speckle tracking echocardiography (STE) in characterising LV myocardial mechanics in healthy adolescent athletes with and without LVNC echocardiographic criteria. METHODS: Adolescent athletes evaluated at three sports academies between 2014 and 2019 were considered for this observational study. Those meeting the Jenni criteria for LVNC (end-systolic non-compacted/compacted myocardium ratio > 2 in any short axis segment) were considered LVNC+ and the rest LVNC-. Peak systolic LV longitudinal strain (Sl), circumferential strain (Sc), rotation (Rot), corresponding strain rates (SRl/c) and segmental values were calculated and compared using a non-inferiority approach. RESULTS: A total of 417 participants were included, mean age 14.5 ± 1.7 years, of which 6.5% were LVNC+ (n = 27). None of the athletes showed any additional LVNC clinical criteria. All average Sl, SRl Sc, SRc and Rot values were no worse in the LVNC+ group compared to LVNC- (p values range 0.0003-0.06), apart from apical SRc (p = 0.2). All 54 segmental measurements (Sl/Sc SRl/SRc and Rot) had numerically comparable means in both LVNC+ and LVNC-, of which 69% were also statistically non-inferior. CONCLUSIONS: Among healthy adolescent athletes, 6.5% met the echocardiographic criteria for LVNC, but showed normal LV STE parameters, in contrast to available data on paediatric LVNC describing abnormal myocardial function. STE could better characterise the myocardial mechanics of athletes with LV hypertrabeculation, thus allowing the transition from structural to functional LVNC diagnosis, especially in suspected physiological remodelling

    The use of 2-D speckle tracking echocardiography in differentiating healthy adolescent athletes with right ventricular outflow tract dilation from patients with arrhythmogenic cardiomyopathy

    Get PDF
    AIMS: Echocardiographic assessment of adolescent athletes for arrhythmogenic cardiomyopathy (ACM) can be challenging owing to right ventricular (RV) exercise-related remodelling, particularly RV outflow tract (RVOT) dilation. The aim of this study is to evaluate the role of RV 2-D speckle tracking echocardiography (STE) in comparing healthy adolescent athletes with and without RVOT dilation to patients with ACM. METHODS AND RESULTS: A total of 391 adolescent athletes, mean age 14.5 ± 1.7 years, evaluated at three sports academies between 2014 and 2019 were included, and compared to previously reported ACM patients (n = 38 definite and n = 39 borderline). Peak systolic RV free wall (RVFW-Sl), global and segmental strain (Sl), and corresponding strain rates (SRl) were calculated. The participants meeting the major modified Task Force Criteria (mTFC) for RVOT dilation were defined as mTFC+ (n = 58, 14.8%), and the rest as mTFC- (n = 333, 85.2%). Mean RVFW-Sl was -27.6 ± 3.4% overall, -28.2 ± 4.1% in the mTFC+ group and - 27.5 ± 3.3% in the mTFC- group. mTFC+ athletes had normal RV-FW-Sl when compared to definite (-29% vs -19%, p < 0.001) and borderline ACM (-29% vs -21%, p < 0.001) cohorts. In addition, all mean global and regional Sl and SRl values were no worse in the mTFC+ group compared to the mTFC- (p values range < 0.0001 to 0.1, inferiority margin of 2% and 0.1 s-1 respectively). CONCLUSIONS: In athletes with RVOT dilation meeting the major mTFC, STE evaluation of the RV can demostrate normal function and differentiate physiological remodelling from pathological changes found in ACM, improving screening in grey-area cases

    Troponin release following endurance exercise: is inflammation the cause? a cardiovascular magnetic resonance study

    Get PDF
    Background: The aetiology and clinical significance of troponin release following endurance exercise is unclear but may be due to transient myocardial inflammation. Cardiovascular magnetic resonance (CMR) affords us the opportunity to evaluate the presence of myocardial inflammation and focal fibrosis and is the ideal imaging modality to study this hypothesis. We sought to correlate the relationship between acute bouts of ultra endurance exercise leading to cardiac biomarkers elevation and the presence of myocardial inflammation and fibrosis using CMR.Methods: 17 recreation athletes (33.5 +/- 6.5 years) were studied before and after a marathon run with troponin, NTproBNP, and CMR. Specific imaging parameters to look for inflammation included T2 weighted images, and T1 weighted spin-echo images before and after an intravenous gadolinium-DTPA to detect myocardial hyperemia secondary to inflammation. Late gadolinium imaging was performed (LGE) to detect any focal regions of replacement fibrosis.Results: Eleven of the 17 participant had elevations of TnI above levels of cut off for myocardial infarction 6 hrs after the marathon (0.075 +/- 0.02, p = 0.007). Left ventricular volumes were reduced post marathon and a small increase in ejection fraction was noted (64 +/- 1% pre, 67 +/- 1.2% post, P = 0.014). Right ventricular volumes, stroke volume, and ejection fraction were unchanged post marathon. No athlete fulfilled criteria for myocardial inflammation based on current criteria. No regions of focal fibrosis were seen in any of the participants.Conclusion: Exercise induced cardiac biomarker release is not associated with any functional changes by CMR or any detectable myocardial inflammation or fibrosis

    CV imaging: What was new in 2012?

    Get PDF
    Echocardiography, single-photon emission computed tomography (SPECT), positron emission tomography (PET), cardiac magnetic resonance, and cardiac computed tomography can be used for anatomic and functional imaging of the heart. All 4 methods are subject to continuous improvement. Echocardiography benefits from the more widespread availability of 3-dimensional imaging, strain and strain rate analysis, and contrast applications. SPECT imaging continues to provide very valuable prognostic data, and PET imaging, on the one hand, permits quantification of coronary flow reserve, a strong prognostic predictor, and, on the other hand, can be used for molecular imaging, allowing the analysis of extremely small-scale functional alterations in the heart. Magnetic resonance is gaining increasing importance as a stress test, mainly through perfusion imaging, and continues to provide very valuable prognostic information based on late gadolinium enhancement. Magnetic resonance coronary angiography does not substantially contribute to clinical cardiology at this point in time. Computed tomography imaging of the heart mainly concentrates on the imaging of coronary artery lumen and plaque and has made substantial progress regarding outcome data. In this review, the current status of the 5 imaging techniques is illustrated by reviewing pertinent publications of the year 2012
    corecore