8 research outputs found

    Local lung immune response to mycobacterium bovis challenge after BCG and M. Bovis heat-inactivated vaccination in European Badger (meles meles)

    Get PDF
    Tuberculosis (TB) vaccination could be used as a key part of integrated strategies for the disease’s control if an effective and safe vaccine under field conditions is obtained. Recent studies in Spain have evaluated the protective efficacy of two oral vaccines against experimental challenge with live intra-bronchial Mycobacterium bovis in captive badgers: the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. With the objective of increasing the knowledge of the cellular development progress of infection and generating further tools to discriminate between mild and severe TB lesions between and within animals, the immunopathology of tuberculous lesions was studied to characterize the local immune response (cell type profile) within lung granulomas from control (non-vaccinated), BCG vaccinated and HIMB-vaccinated experimentally infected badgers with M. bovis. Four immunohistochemical protocols, for the specific detection of macrophages, T lymphocytes, B lymphocytes and plasma cells within TB granulomas in formalin fixed sections of the right middle lung lobe (lobe targeted for the M. bovis delivery), were performed. Immunolabelled sections were scanned and five randomly selected areas were analyzed with digital image analysis software. The results were expressed as the proportion of the positively immunolabelled area within the total area of the selected site. Data was analyzed using the statistical analysis software (SAS). In the three treatment groups, macrophages were the most abundant inflammatory cells within the granulomas, followed by B lymphocytes and plasma cells. T lymphocyes were absent in those granulomas. This would suggest a predominance of a non-specific innate response mediated by phagocytic cells over an adaptative humoral immune response. The proportion of macrophages and plasma cells was higher in BCG and HIMB-vaccinated badgers, respectively, suggesting the establishment of an adaptative humoral response in HIMB-vaccinated badgers. The lower bacterial load at the lung level, as well as the volume of lesions in lungs using magnetic resonance imaging in badgers with the HIMB vaccine in relation with local immune response presented, must be highlighted, since it would be an advantage in favor of its use under field conditions in terms of reducing TB transmission and environmental contamination.This work has been funded by Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI) reference project RTI2018-096010-B-C21 (FEDER co-funded) and, by PCTI 2018–2020 (GRUPIN: IDI2018-000237) and FEDER. Ms. Cristina Blanco Vázquez was granted with a predoctoral fellowship funded by INIA-CCAA (FPI-INIA) (2018 call). Ms. Ileana Z. Martínez was supported by a Fundación Carolina PhD scholarship (2017 call). We have received funds by RTI2018-096010-B-C21 (FEDER co-funded) to cover publication costs

    Local Lung Immune Response to Mycobacterium bovis Challenge after BCG and M. bovis Heat-Inactivated Vaccination in European Badger (Meles meles)

    Get PDF
    [EN] Tuberculosis (TB) vaccination could be used as a key part of integrated strategies for the disease’s control if an effective and safe vaccine under field conditions is obtained. Recent studies in Spain have evaluated the protective efficacy of two oral vaccines against experimental challenge with live intra-bronchial Mycobacterium bovis in captive badgers: the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. With the objective of increasing the knowledge of the cellular development progress of infection and generating further tools to discriminate between mild and severe TB lesions between and within animals, the immunopathology of tuberculous lesions was studied to characterize the local immune response (cell type profile) within lung granulomas from control (non-vaccinated), BCG vaccinated and HIMB-vaccinated experimentally infected badgers with M. bovis. Four immunohistochemical protocols, for the specific detection of macrophages, T lymphocytes, B lymphocytes and plasma cells within TB granulomas in formalin fixed sections of the right middle lung lobe (lobe targeted for the M. bovis delivery), were performed. Immunolabelled sections were scanned and five randomly selected areas were analyzed with digital image analysis software. The results were expressed as the proportion of the positively immunolabelled area within the total area of the selected site. Data was analyzed using the statistical analysis software (SAS). In the three treatment groups, macrophages were the most abundant inflammatory cells within the granulomas, followed by B lymphocytes and plasma cells. T lymphocyes were absent in those granulomas. This would suggest a predominance of a non-specific innate response mediated by phagocytic cells over an adaptative humoral immune response. The proportion of macrophages and plasma cells was higher in BCG and HIMB-vaccinated badgers, respectively, suggesting the establishment of an adaptative humoral response in HIMB-vaccinated badgers. The lower bacterial load at the lung level, as well as the volume of lesions in lungs using magnetic resonance imaging in badgers with the HIMB vaccine in relation with local immune response presented, must be highlighted, since it would be an advantage in favor of its use under field conditions in terms of reducing TB transmission and environmental contaminationSIThis work has been funded by Ministerio de Ciencia, Innovación y Universidades (MCIU) and the Agencia Estatal de Investigación (AEI) reference project RTI2018-096010-B-C21 (FEDER co-funded) and, by PCTI 2018–2020 (GRUPIN: IDI2018-000237) and FEDER. Ms. Cristina Blanco Vázquez was granted with a predoctoral fellowship funded by INIA-CCAA (FPI-INIA) (2018 call). Ms. Ileana Z. Martínez was supported by a Fundación Carolina PhD scholarship (2017 call). We have received funds by RTI2018-096010-B-C21 (FEDER co-funded) to cover publication cost

    Protection of Eurasian badgers (Meles meles) from tuberculosis after intra-muscular vaccination with different doses of BCG

    No full text
    a b s t r a c t Mycobacterium bovis infection is widespread in Eurasian badger (Meles meles) populations in Great Britain and the Republic of Ireland where they act as a wildlife reservoir of infection for cattle. Removal of infected badgers can significantly reduce the incidence of bovine tuberculosis (TB) in local cattle herds. However, control measures based on culling of native wildlife are contentious and may even be detrimental to disease control. Vaccinating badgers with bacillus Calmette-Guerin (BCG) has been shown to be efficacious against experimentally induced TB of badgers when administered subcutaneously and orally. Vaccination may be an alternative or complementary strategy to other disease control measures. As the subcutaneous route is impractical for vaccinating wild badgers and an oral vaccine bait formulation is currently unavailable, we evaluated the intramuscular (IM) route of BCG administration. It has been demonstrated that the IM route is safe in badgers. IM administration has the practical advantage of being relatively easy to perform on trapped wild badgers without recourse to chemical immobilisation. We report the evaluation of the efficacy of IM administration of BCG Danish strain 1331 at two different doses: the dose prescribed for adult humans (2-8 × 10 5 colony forming units) and a 10-fold higher dose. Vaccination generated a dose-dependent cell-mediated immune response characterised by the production of interferon-␥ (IFN␥) and protection against endobronchial challenge with virulent M. bovis. Protection, expressed in terms of a significant reduction in the severity of disease, the number of tissues containing acid-fast bacilli, and reduced bacterial excretion was statistically significant with the higher dose only. Crow

    Protective Effect of Oral BCG and Inactivated Mycobacterium bovis Vaccines in European Badgers (Meles meles) Experimentally Infected With M. bovis

    No full text
    International audienceIn Europe, badgers (Meles meles) are recognized as major tuberculosis (TB) reservoir hosts with the potential to transmit infection to associated cattle herds. Recent studies in Spain have demonstrated that vaccination with a heat-inactivated Mycobacterium bovis vaccine (HIMB) successfully protects captive wild boar and red deer against progressive disease. The aim of this study was to evaluate the efficacy of two oral vaccines against TB in a badger model: the live-attenuated M. bovis bacillus Calmette-Guérin BCG vaccine (Danish strain) and a HIMB vaccine. Twenty-four badgers were separated in three treatment groups: oral vaccinated with live BCG (108 CFU, n = 5), oral vaccinated with HIMB (107 CFU, n = 7), and unvaccinated controls (n = 12). All badgers were experimentally infected with M. bovis (103 CFU) by the endobronchial route targeting the right middle lung lobe. Throughout the study, clinical, immunological, pathological, and bacteriological parameters of infection were measured. Both vaccines conferred protection against experimental TB in badger, as measured by a reduction of the severity and lesion volumes. Based on these data, HIMB vaccination appears to be a promising TB oral vaccine candidate for badgers in endemic countries

    Bioreactor-Grown Bacillus of Calmette and Guérin (BCG) Vaccine Protects Badgers against Virulent Mycobacterium bovis When Administered Orally: Identifying Limitations in Baited Vaccine Delivery

    Get PDF
    Bovine tuberculosis (TB) in Great Britain adversely affects animal health and welfare and is a cause of considerable economic loss. The situation is exacerbated by European badgers (Meles meles) acting as a wildlife source of recurrent Mycobacterium bovis infection to cattle. Vaccination of badgers against TB is a possible means to reduce and control bovine TB. The delivery of vaccine in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. There are practical limitations over the volume and concentration of Bacillus of Calmette and Guérin (BCG) that can be prepared for inclusion in bait. The production of BCG in a bioreactor may overcome these issues. We evaluated the efficacy of oral, bioreactor-grown BCG against experimental TB in badgers. We demonstrated repeatable protection through the direct administration of at least 2.0 × 108 colony forming units of BCG to the oral cavity, whereas vaccination via voluntary consumption of bait containing the same preparation of BCG did not result in demonstrable protection at the group-level, although a minority of badgers consuming bait showed immunological responses and protection after challenge equivalent to badgers receiving oral vaccine by direct administration. The need to deliver oral BCG in the context of a palatable and environmentally robust bait appears to introduce such variation in BCG delivery to sites of immune induction in the badger as to render experimental studies variable and inconsistent

    Bacillus Calmette-Guérin vaccination reduces the severity and progression of tuberculosis in badgers

    No full text
    Control of bovine tuberculosis (TB) in cattle has proven particularly challenging where reservoirs of infection exist in wildlife populations. In Britain and Ireland, control is hampered by a reservoir of infection in Eurasian badgers (Meles meles). Badger culling has positive and negative effects on bovine TB in cattle and is difficult, costly and controversial. Here we show that Bacillus Calmette-Guérin (BCG) vaccination of captive badgers reduced the progression, severity and excretion of Mycobacterium bovis infection after experimental challenge. In a clinical field study, BCG vaccination of free-living badgers reduced the incidence of positive serological test results by 73.8 per cent. In common with other species, BCG did not appear to prevent infection of badgers subjected to experimental challenge, but did significantly reduce the overall disease burden. BCG vaccination of badgers could comprise an important component of a comprehensive programme of measures to control bovine TB in cattle
    corecore