2 research outputs found

    Comparison of Atmospheric and Lithospheric Culturable Bacterial Communities from Two Dissimilar Active Volcanic Sites, Surtsey Island and Fimmvörðuháls Mountain in Iceland

    Get PDF
    This research was funded by the Icelandic Research fund (IRF, RANNÍS) (174425-051). T.Š.-T. was supported by The Danish National Research Foundation (DNRF106, to the Stellar Astrophysics Centre, Aarhus University), the AUFF Nova programme (AUFF-E-2015-FLS-9-10), the Novo Nordisk Foundation (NNF19OC0056963) and the Villum Fonden (23175 and 37435). The Europlanet 2020 Research Infrastructure TA program (18-EPN4-059) funded T.Š.-T. participation in the sampling campaign.Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms and volcanic eruptions. Before they reach their deposition site, they experience stressful atmospheric conditions which preclude the successful dispersal of a large fraction of cells. In this study, our objectives were to assess and compare the atmospheric and lithospheric bacterial cultivable diversity of two geographically different Icelandic volcanic sites: the island Surtsey and the Fimmvörðuháls mountain, to predict the origin of the culturable microbes from these sites, and to select airborne candidates for further investigation. Using a combination of MALDI Biotyper analysis and partial 16S rRNA gene sequencing, a total of 1162 strains were identified, belonging to 72 species affiliated to 40 genera with potentially 26 new species. The most prevalent phyla identified were Proteobacteria and Actinobacteria. Statistical analysis showed significant differences between atmospheric and lithospheric microbial communities, with distinct communities in Surtsey’s air. By combining the air mass back trajectories and the analysis of the closest representative species of our isolates, we concluded that 85% of our isolates came from the surrounding environments and only 15% from long distances. The taxonomic proportions of the isolates were reflected by the site’s nature and location.Peer reviewe

    Muscle Oxygen Supply and Use in Type 1 Diabetes, From Ambient Air to the Mitochondrial Respiratory Chain: Is There a Limiting Step?

    No full text
    International audienceOBJECTIVE: Long before clinical complications of type 1 diabetes (T1D) develop, oxygen supply and use can be altered during activities of daily life. We examined in patients with uncomplicated T1D all steps of the oxygen pathway, from the lungs to the mitochondria, using an integrative ex vivo (muscle biopsies) and in vivo (during exercise) approach.RESEARCH DESIGN AND METHODS: We compared 16 adults with T1D with 16 strictly matched healthy controls. We assessed lung diffusion capacity for carbon monoxide and nitric oxide, exercise-induced changes in arterial O2 content (SaO2, PaO2, hemoglobin), muscle blood volume, and O2 extraction (via near-infrared spectroscopy). We analyzed blood samples for metabolic and hormonal vasoactive moieties and factors that are able to shift the O2-hemoglobin dissociation curve. Mitochondrial oxidative capacities were assessed in permeabilized vastus lateralis muscle fibers.RESULTS: Lung diffusion capacity and arterial O2 transport were normal in patients with T1D. However, those patients displayed blunted exercise-induced increases in muscle blood volume, despite higher serum insulin, and in O2 extraction, despite higher erythrocyte 2,3-diphosphoglycerate. Although complex I- and complex II-supported mitochondrial respirations were unaltered, complex IV capacity (relative to complex I capacity) was impaired in patients with T1D, and this was even more apparent in those with long-standing diabetes and high HbA1c. [Formula: see text]O2max was lower in patients with T1D than in the controls.CONCLUSIONS: Early defects in microvascular delivery of blood to skeletal muscle and in complex IV capacity in the mitochondrial respiratory chain may negatively impact aerobic fitness. These findings are clinically relevant considering the main role of skeletal muscle oxidation in whole-body glucose disposal
    corecore