234 research outputs found

    Wettability characteristics of carbon steel modified with CO2, Nd:YAG, Excimer and high power diode lasers

    Get PDF
    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of a common mild steel (EN8) was found to effect changes in the wettability characteristics of the steel, namely changes in the measured contact angle. These modifications are related to changes in the surface roughness, changes in the surface oxygen content and changes in the surface energy of the mild steel. The wettability characteristics of the selected mild steel could be controlled and/or modified by laser surface treatment. A correlation between the change of the wetting properties of the mild steel and the laser wavelength was found

    Contrasting the beam interaction characteristics of selected lasers with a partially stabilised zirconia (PSZ) bio-ceramic

    Get PDF
    Differences in the beam interaction characteristics of a CO2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilised zirconia (PSZ) bio-ceramic have been studied. A derivative of Beer-Lambert’s law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55 x 10-3 cm for the CO2 laser, 18.22 x 10-3 cm for the Nd:YAG laser, 17.17 x 10-3 cm for the HPDL and 8.41 x 10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J/cm2, 97 J/cm2, 115 J/cm2 and 0.48 J/cm2 respectively. The thermal loading value for the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ/cm3, 5.32 kJ/cm3, 6.69 kJ/cm3 and 57.04 kJ/cm3 respectively

    Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    Get PDF
    We have investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. At energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. We discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formatio

    Wettability characteristics of an Al2O3/SiO2-based ceramic modified with CO2, Nd:YAG, excimer and high-power diode lasers

    Get PDF
    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of an Al2O3/SiO2 based ceramic was found to effect significant changes in the wettability characteristics of the material. It was observed that interaction with CO2, Nd:YAG and HPDL radiation reduced the enamel contact angle from 1180 to 310, 340 and 330 respectively. In contrast, interaction with excimer laser radiation resulted an increase in the contact angle to 1210. Such changes were identified as being due to: (i) the melting and partial vitrification of the Al2O3/SiO2 based ceramic surface as a result of interaction with CO2, Nd:YAG HPDL radiation. (ii) the surface roughness of the Al2O3/SiO2 based ceramic increasing after interaction with excimer laser radiation. (iii) the surface oxygen content of the Al2O3/SiO2 based ceramic increasing after interaction with CO2, Nd:YAG and HPDL radiation. The work has shown that the wettability characteristics of the Al2O3/SiO2 based ceramic could be controlled and/or modified with laser surface treatment. In particular, whether the laser radiation had the propensity to cause surface melting. However, a wavelength dependance of the change of the wetting properties could not be deduced from the findings of this work

    Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum

    Get PDF
    We have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The interstitial-type a/2 dislocation loops emit self-interstitial atoms and glide to the free sample surface during the early stages of annealing. The resultant vacancy excess in the matrix originates vacancy-type a/2 dislocation loops that grow by loop and vacancy absorption in the temperature range of 600–900 °C. Voids form at 1000 °C, by either vacancy absorption or loop collapse, and grow progressively up to 1300 °C. Tantalum delays void formation by a vacancy-solute trapping mechanism

    Graphene Mode-Locked Ultrafast Laser

    Full text link
    Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro and nanomechanical systems, thin-film transistors and transparent and conductive composites and electrodes. Here we exploit the optoelectronic properties of graphene to realize an ultrafast laser. A graphene-polymer composite is fabricated using wet-chemistry techniques. Pauli blocking following intense illumination results in saturable absorption, independent of wavelength. This is used to passively mode-lock an Erbium-doped fibre laser working at 1559nm, with a 5.24nm spectral bandwidth and ~460fs pulse duration, paving the way to graphene-based photonics

    Melt Pool and Keyhole Behavior Analysis for Deep Penetration Laser Welding

    Get PDF
    One usually defines the main characteristic of the welding performances of a given laser system by its “penetration curve” that corresponds to the welding depth as a function of the welding speed Vw for a given set of operating parameters. Analysis of a penetration curve is interesting and gives very fruitful results. Coupled with high speed video imaging of melt pool surface and ejected plume behaviors, the analysis of this penetration curve on a very large range of welding speeds, typically from 0 to 50 m/min, has allowed us to observe very different and characteristic regimes. These regimes are mainly characterized by the physical processes by which they impede the laser beam penetration inside the material. We show that it is only at rather high welding speeds that these limiting processes are reduced. Consequently the scaling law of welding depth with welding speed is in agreement with adapted modeling of this process. On the other hand, as the welding speed is reduced, different effects depending of the weld pool dynamics and plume interaction, strongly disturb the keyhole stability and are responsible of the deviation of the penetration curve from the previous modeling that agrees with a 1/Vw scaling law. A corresponding criterion for the occurrence of this effect is defined

    In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    Get PDF
    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in He1 ion irradiation at 9506C has been completed. A dynamic and complex evolution in the microstructure situ 2 keV was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials

    Debt and development of less developed countries

    No full text
    Typescript (photocopy).Digitized by Kansas Correctional Industrie
    corecore