133 research outputs found

    Public Release of RELXILL_NK: A Relativistic Reflection Model for Testing Einstein's Gravity

    Get PDF
    We present the public release version of relxill_nk, an X-ray reflection model for testing the Kerr hypothesis and general relativity. This model extends the relxill model that assumes the black hole spacetime is described by the Kerr metric. We also present relxilllp_nk, the first non-Kerr X-ray reflection model with a lamppost corona configuration, as well as all other models available in the full relxill_nk package. In all models the relevant relativistic effects are calculated through a general relativistic ray-tracing code that can be applied to any well-behaved, stationary, axisymmetric, and asymptotically flat black hole spacetime. We show that the numerical error introduced by using a ray-tracing code is not significant as compared with the observational error present in current X-ray reflection spectrum observations. In addition, we present the reflection spectrum for the Johannsen metric as calculated by relxill_nk.Comment: 15 pages, 8 figures. v2: refereed version. Code and documentation available at http://www.physics.fudan.edu.cn/tps/people/bambi/Site/RELXILL_NK.html and at http://www.tat.physik.uni-tuebingen.de/~nampalliwar/relxill_nk

    Testing the Kerr metric with X-ray Reflection Spectroscopy of Mrk 335 Suzaku data

    Get PDF
    Einstein's gravity has undergone extensive tests in the weak field gravitational limit, with results in agreement with theoretical predictions. There exist theories beyond general relativity (GR) which modify gravity in the strong field regime but agree with GR in the weak field. Astrophysical black holes are believed to be described by the Kerr metric and serve as suitable candidates to test strong gravity with electromagnetic radiation. We perform such a test by fitting one Suzaku dataset of the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335 with X-ray reflection spectroscopy, using the Johannsen metric to model the black hole spacetime and test for deviations from Kerr. We find the data is best modeled with a hybrid model that includes both partial covering absorption and a reflection component. This is the first time such a model has been proposed for a high-flux (low reflection) Mrk 335 dataset. We constrain the Johannsen deformation parameter α13\alpha_{13} to 1.50.8-1.50.8, and the α22\alpha_{22} parameter to 0.40.7-0.40.7, both at the 99% confidence level. Although additional solutions at large deviations from the Kerr metric show statistical similarity with the ones above, further analysis suggests these solutions may be manifestations of uncertainties beyond our control and do not represent the data. Hence, our results are in agreement with the idea that the supermassive compact object at the center of Mrk 335 is described by the Kerr metric.Comment: 13 pages, 9 figures. v2: refereed versio

    Testing General Relativity with X-ray reflection spectroscopy: The Konoplya-Rezzolla-Zhidenko parametrization

    Get PDF
    X-ray reflection spectroscopy is a promising technique for testing general relativity in the strong field regime, as it can be used to test the Kerr black hole hypothesis. In this context, the parametrically deformed black hole metrics proposed by Konoplya, Rezzolla \& Zhidenko (Phys. Rev. D93, 064015, 2016) form an important class of non-Kerr black holes. We implement this class of black hole metrics in \textsc{relxill\_nk}, which is a framework we have developed for testing for non-Kerr black holes using X-ray reflection spectroscopy. We perform a qualitative analysis of the effect of the leading order strong-field deformation parameters on typical observables like the innermost stable circular orbits and the reflection spectra. We also present the first X-ray constraints on some of the deformation parameters of this metric, using \textit{Suzaku} data from the supermassive black hole in Ark~564, and compare them with those obtained (or expected) from other observational techniques like gravitational waves and black hole imaging.Comment: Minor updates. Published at Phys. Rev. D 102, 124071 (2020

    A redshifted Fe Kα\alpha line from the unusual gamma-ray source PMN J1603-4904

    Full text link
    Multiwavelength observations have revealed the highly unusual properties of the gamma-ray source PMN J1603-4904, which are difficult to reconcile with any other well established gamma-ray source class. The object is either a very atypical blazar or compact jet source seen at a larger angle to the line of sight. In order to determine the physical origin of the high-energy emission processes in PMN J1603-4904, we study the X-ray spectrum in detail. We performed quasi-simultaneous X-ray observations with XMM-Newton and Suzaku in 2013 September, resulting in the first high signal-to-noise X-ray spectrum of this source. The 2-10 keV X-ray spectrum can be well described by an absorbed power law with an emission line at 5.44±\pm0.05 keV (observed frame). Interpreting this feature as a K{\alpha} line from neutral iron, we determine the redshift of PMN J1603-4904 to be z=0.18±\pm0.01, corresponding to a luminosity distance of 872±\pm54 Mpc. The detection of a redshifted X-ray emission line further challenges the original BL Lac classification of PMN J1603-4904. This result suggests that the source is observed at a larger angle to the line of sight than expected for blazars, and thus the source would add to the elusive class of gamma-ray loud misaligned-jet objects, possibly a {\gamma}-ray bright young radio galaxy.Comment: 5 pages, 1 figure, A&A accepte
    corecore