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X-ray reflection spectroscopy is a promising technique for testing general relativity in the strong-field
regime as it can be used to test the Kerr black hole hypothesis. In this context, the parametrically deformed
black hole metrics proposed by Konoplya, Rezzolla, and Zhidenko [Phys. Rev. D 93, 064015 (2016)] form
an important class of non-Kerr black holes. We implement this class of black hole metrics in RELXILL_NK,
which is a framework we have developed for testing for non-Kerr black holes using x-ray reflection
spectroscopy. We perform a qualitative analysis of the effect of the leading order strong-field deformation
parameters on typical observables like the innermost stable circular orbits and the reflection spectra. We
also present the first x-ray constraints on some of the deformation parameters of this metric, using Suzaku
data from the supermassive black hole in Ark 564, and compare them with those obtained (or expected)
from other observational techniques like gravitational waves and black hole imaging.
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I. INTRODUCTION

Einstein’s theory of gravity, since its proposition over a
century ago, has been applied to a variety of astrophysical
phenomena in our Universe. Over these years, it has
emerged as the standard framework for describing space-
time in the presence of gravitational objects. While largely
successful in the weak-field tests [1], only recently the
strong-field predictions of Einstein’s gravity (the general
theory of relativity, GR hereafter) have become testable in a
variety of ways [2–4]. The presence of a zoo of alternative
theories of gravity—which address shortcomings of GR
with respect to observations, e.g., dark matter and dark
energy, and/or extend GR to overcome issues, e.g., diffi-
culties in quantizing GR and resolution of the curvature
singularity—makes it crucial to test the strong-field pre-
dictions of GR with the latest techniques and technologies.
Black holes (BHs hereafter) are surprisingly ubiquitous

objects in our Universe, and, due to strong gravity regions
in their neighborhoods, they form the perfect candidates for
testing theories of gravity. Within GR, under typical
astrophysical conditions, a BH is an extremely simple

object and its effect on the spacetime is described by very
few parameters. Most commonly, these are the BH
mass and spin and the object is known as a Kerr BH
[5]. The assumption that astrophysical BHs are described
by the Kerr metric is known as the “Kerr hypothesis.” (For
the specific conditions and assumptions, see Ref. [6].)
Alternative theories of gravity often introduce additional
parameters, deforming the BH away from the Kerr solution.
Observations of the effects of BHs have been a celebrated
exercise in physics given the potential for discovering
interesting phenomena. Some of the ways these observa-
tions are done are x-ray spectroscopy (first measurements
of the BH spin [7,8]), gravitational wave interferometry
(first observation of coalescence of a pair of BHs [9]),
pulsar timing (first indirect detection of gravitational waves
[10]), and BH imaging (capturing an image of the region
close to the BH horizon for the first time [11]).
In this work, our focus is on the technique of x-ray

spectroscopy. In particular, we are interested in the reflec-
tion spectrum of BHs with accretion disks, which is in the
x-ray band. Since the gravity of the BH affects its
neighborhood and photons that travel from the neighbor-
hood to us, the analysis of the reflection spectrum can be
used to study the nature of a BH itself [2,12]. The most
advanced model for calculation of the reflection spectrum
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in the Kerr case is RELXILL [13,14]. We have extended this
model to RELXILL_NK, which can calculate the reflection
spectrum for non-Kerr metrics [15,16]. The model has been
applied to x-ray observations of several astrophysical BHs
to place constraints on deviations away from the Kerr
solution [17–27].
The non-Kerr metric most commonly used with

RELXILL_NK is the one proposed in Ref. [28] (see also
[29]). This metric, referred to as the Johannsen metric
hereafter, albeit not a solution of a well-defined alternative
theory of gravity, preserves the symmetry of the Kerr metric
associated with a Killing tensor [30,31]. It can be mapped
to BH solutions from some alternative theories with
suitable combinations of the new parameters introduced
in the metric. In this sense, it is a good candidate for theory-
agnostic tests of the Kerr hypothesis. But it suffers from
some important limitations. BHs in alternative theories do
not generally have the additional symmetry of the Kerr
solution. Moreover, the parametrization used in Ref. [28]
for the deformation functions in the metric is based on an
M=r expansion (in units of c ¼ G ¼ 1), whereM is the BH
mass and r the radial coordinate. This expansion becomes
problematic at small r for rapidly rotating BHs (e.g., near
the inner edge of an accretion disk). This is exactly the
regime where x-ray spectroscopy is most powerful [32,33]
and typically used [34,35]. It is, therefore, essential to use a
better metric to test the Kerr hypothesis, especially with x-
ray reflection spectroscopy. In this paper, we present the
application of a different metric to RELXILL_NK, which
overcomes these limitations. This metric has been proposed
in Ref. [36], and we will refer to it as the KRZ metric
hereafter.
The paper is organized as follows: in Sec. II, we review

the KRZ metric, specify the deformation parameters, and
review the RELXILL_NK framework and the numerical
methods involved. Section III presents a qualitative analysis
of the effect of the deformation parameters on relevant
quantities (e.g., the innermost stable circular orbit) and
observables (e.g., the reflection spectrum). In Sec. IV, the
new model is applied to x-ray observations of a super-
massive BH, Ark 564. The findings of the Ark 564 data
analysis are discussed and compared with estimates from
other observational techniques in Sec. V. Also discussed in
Sec. V are issues with systematic uncertainties and future
works. Throughout the paper, we will express quantities in
units of c ¼ G ¼ 1. Except when mentioned explicitly, we
will set the BH mass M ¼ 1.

II. REVIEW

Non-Kerr metrics can be classified in two categories.
The top-down metrics are those which are obtained as a
solution of an alternative theory of gravity, e.g., the
Einstein-dilaton-Gauss-Bonnet BHs [37–42], the Chern-
Simons BHs [43–46], and the Kerr-Sen BHs [47–50]. The
bottom-up metrics on the other hand are obtained not from

a specific theory of gravity but by generalizing the Kerr
metric [28,29,31,36,51]. Each approach has its advantages
and disadvantages. Top-down metrics are difficult to obtain
and might be known only numerically, but testing for them
amounts to testing an alternative theory of gravity. Bottom-
up metrics may have pathologies in spacetime, but they can
be mapped to several top-down metrics, and thus con-
straints on parameters of bottom-up metrics translate to
constraints on several top-down metrics. Our focus in the
present work is on a particularly attractive bottom-up case,
the KRZ metric.

A. The KRZ metric

The KRZmetric [36] is based on a generic stationary and
axisymmetric metric written in the Boyer-Lindquist-like
ðt; r; θ;ϕÞ coordinates, where t and ϕ are along the
direction of a timelike and a spacelike Killing vector,
respectively, r and θ are orthogonal to each other and to t
and ϕ, and at spatial infinity ðr; θ;ϕÞ reduce to the standard
spherical coordinates. The metric functions are written in
terms of continued fraction expansions in the polar and
radial coordinates.
The KRZ metric has several advantages over other

bottom-up metrics (see [36,52] for more details):
(1) Parametrizations based on an expansion in M=r

suffer from the inherent weakness that close to the
horizon, where the effects of gravity are strongest,
higher-order parameters become equally important,
making it impossible to isolate the dominant terms in
the expansion. The continued fraction expansion
trick allows for quicker convergence with fewer
parameters.

(2) A crucial feature of any bottom-up metric is its
ability to map to several top-down metrics. The KRZ
metric is generic enough to allow mapping to various
top-down metrics with fewer parameters compared
to other bottom-up metrics [41,42,53].

(3) Several bottom-up metrics are based on the Janis-
Newman transformation, which is not guaranteed
to work beyond general relativity [54]. The KRZ
metric uses a different approach to avoid this.

The line element of the KRZ metric reads [36,52]

ds2 ¼ −
N2 −W2sin2θ

K2
dt2 − 2Wrsin2θdtdϕ

þ K2r2sin2θdϕ2 þ ΣB2

N2
dr2 þ Σr2dθ2; ð1Þ

where each function N, B, W, and K depends on r and θ,
and is written in a way that separates the terms that are
constrained asymptotically (e.g., through parametrized
post-Newtonian constraints) and those that are constrained
near the BH horizon. For instance,
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B ¼ 1þ
X∞
i¼0

fbi0ð1 − xÞ þ B̃iðxÞð1 − x2Þgyi; ð2Þ

where x ¼ 1 − r0=r and r0 is the BH horizon radius in the
equatorial plane, y ¼ cos θ, and the bi0 terms are con-
strained to ensure that B has the correct asymptotic
behavior. The B̃iðxÞ terms encode all the strong-field
deviations of the metric and are written as [36]

B̃iðxÞ ¼
bi1

1þ bi2x

1þbi3x
1þ���

: ð3Þ

Since we are interested in parametric deformations
away from the Kerr solution in the strong field regime,
we will set all asymptotically constrained terms to their GR
values and only retain the terms calculated close to the BH
horizon. We will follow the choice made in Ref. [52] for the
strong-field parameters to be retained. Assuming reflection
symmetry across the equatorial plane and neglecting
coefficients of higher orders, we get [52]

N2 ¼
�
1 −

r0
r

��
1 −

ϵ0r0
r

þ ðk00 − ϵ0Þ
r20
r2

þ δ1r30
r3

�

þ

0
B@a20r30

r3
þ a21r40

r4
þ k21r30

r3ð1þ k22ð1−r0
r Þ

1þk23ð1−r0
r Þ
Þ

1
CAcos2θ; ð4Þ

B ¼ 1þ δ4r20
r2

þ δ5r20
r2

cos2θ; Σ ¼ 1þ a2�
r2

cos2θ; ð5Þ

W ¼ 1

Σ

�
w00r20
r2

þ δ2r30
r3

þ δ3r30
r3

cos2θ

�
; ð6Þ

K2 ¼ 1þa�W
r

þ 1

Σ

0
B@k00r20

r2
þ

0
B@k20r20

r2
þ k21r30

r3ð1þ k22ð1−r0
r Þ

1þk23ð1−r0
r Þ
Þ

1
CAcos2θ

1
CA:

ð7Þ

Here a� ¼ J=M2 is the dimensionless spin parameter,

r0¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−a2�

q
; ϵ0¼

2− r0
r0

;

a20¼
2a2�
r30

; a21¼−
a4�
r40

þδ6;

k00¼ k22¼ k23¼
a2�
r20
; k20¼ 0;

k21¼
a4�
r40

−
2a2�
r30

−δ6; w00 ¼
2a�
r20

; ð8Þ

and fδig (i ¼ 1; 2;…; 6) are six deformation parameters,
which have been introduced to study deviations away from
the Kerr metric. Note that the above expressions for the
metric components are slightly different than those in
Ref. [36], since the expression given in Ref. [36] do not
reduce to the Kerr metric in the limit of zero deformation.
The expressions above do reproduce the Kerr solution
exactly when all δi are set to zero. The physical inter-
pretation of the deformation parameters can be summarized
as follows (see Ref. [36] for more details):

δ1 → deformations of gtt;

δ2; δ3 → rotational deformations of the metric;

δ4; δ5 → deformations of grr;

δ6 → deformations of the event horizon:

With this choice, the mass-quadrupole moment is the same
as in the Kerr metric, and deviations from the Kerr solution
are only possible in the strong gravity region.
Arbitrary deviations away from Kerr can create pathol-

ogies (e.g., closed timelike curves, Lorentz signature
violation) in spacetime. To avoid such scenarios, we
impose restrictions on the above deformation parameters
so that the following conditions are satisfied everywhere
outside the horizon:
(1) The metric determinant is always negative.
(2) The metric coefficient gϕϕ is greater than zero.
(3) N2 is nonvanishing.

The explicit restrictions on each deformation parameter can
be derived from these conditions using Eqs. (1) and (4).
Assuming only one nonzero δi at a time, we get the
following restrictions on each δi:

δ1 >
4r0 − 3r20 − a2

r20
; ð9Þ

δ2; δ3

(
>

<
−

4

a3
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ if a > 0;

if a < 0;
ð10Þ

δ4; δ5 > −1; ð11Þ

δ6 <
r20

4 − a2
: ð12Þ

Note that currently RELXILL_NK allows for variation in one
deformation parameter at a time, so we will analyze the
effect of each δi while fixing all other δs to zero. While
mapping to BHs of alternative theories of gravity is unlikely
to result in a single nonzero deformation parameter (e.g., see
the mappings to static Einstein-dilaton-Gauss-Bonnet BHs
in Ref. [41] and slowly rotating Einstein-dilaton-Gauss-
Bonnet BHs in Ref. [36]), we consider our analysis as a test
of the validity of GR, in the spirit of null tests [55,56].
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B. The Xspec model

The standard astrophysical system in x-ray reflection
spectroscopy is modeled with the BH-disk-corona model
[35,57–59]. The BH is assumed to be surrounded by a
geometrically thin and optically thick disk [60],1 with its
inner edge at some radius rin, often at the innermost stable
circular orbit (ISCO), and the outer edge at some large
radius rout. In addition, the system possesses a “corona,”
which is thought to be a cloud of hotter (relative to the disk)
gas or the base of an astrophysical jet. Figure 1 illustrates
the system under discussion. The disk emits as a blackbody
locally and as a multitemperature blackbody when inte-
grated radially (labeled the “thermal component” in Fig. 1).
Inverse Compton scattering of the thermal component by
the corona produces x rays (labeled the “power-law
component” in Fig. 1), some of which returns to the disk
and is reflected (labeled the “reflected component” in
Fig. 1). Among these, the reflected component is most
promising for studying the effects of strong gravity [2,34].
Modeling the reflection component requires some under-

standing of the various physical parameters of disk-corona
model. RELXILL_NK has several parameters to account for
the different aspects of the system. These include the inner
and outer edge of the disk, inclination of the disk relative to
the observer, the disk’s elemental constitution and their
ionization, and the emissivity profile. The emissivity profile
determines the reflection spectrum at the source, i.e., at the
disk, and depends strongly on the coronal geometry. Since
the latter is poorly understood, unless in specific cases like
the lamp-post geometry, the emissivity profile is modeled
by a power law (intensity ∝ 1=rq) or a broken power law
(intensity ∝ 1=ra for r ≤ rbr and ∝ 1=rb for r > rbr). Apart
from the BH spin, the spacetime is determined by two

parameters associated with deviations from Kerr: one
parameter picks a specific deformation parameter, e.g.,
KRZ δ1; the other parameter defines the value of the chosen
deformation parameter.2 This flexibility allows us to the use
the same framework of RELXILL_NK to analyze deformation
parameters of various metrics. Note that RELXILL_NK

allows one deformation parameter at a time to vary, a
limitation imposed by the flexible image transport system
(FITS) table file (see below), which grows exponentially
with each additional deformation parameter.

C. Numerical method

The numerical method has been presented in detail earlier
[15,16]. Here we briefly review it. The RELXILL_NK frame-
work uses the transfer function formalism, introduced in
[65] and implemented in the RELXILL suite of models
[32,66,67] to optimize the calculation of the x-ray flux.
In terms of the transfer function, the flux can be written
as [15]:

FoðνoÞ ¼
Z

Ioðνo; X; YÞdΩ̃

¼ 1

D2

Z
rout

rin

Z
1

0

πre
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ð1 − g�Þp fðg�; re; iÞ

× Ieðνe; re; ϑeÞdg�dre: ð13Þ

Here Io and Ie are the specific intensities of the radiation
detected by the distant observer and the emitter, respectively.
These are related via the Liouville’s theorem: Io ¼ g3Ie,
where g ¼ νo=νe is the redshift factor, νo is the photon
frequency as measured by the distant observer, and νe is
the photon frequency in the rest frame of the emitter. re is
the emission radius in the disk and ϑe is the photon’s
direction relative to the disk at the point of emission.X andY
are the Cartesian coordinates of the image of the disk in the
plane of the distant observer,D is the distance of the observer
from the source, and dΩ̃ ¼ dXdY=D2 is the element of the
solid angle subtended by the image of the disk in the
observer’s sky. The transfer function itself is defined as

fðg�; re; iÞ ¼
1

πre
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ð1 − g�Þ

p ���� ∂ðX; YÞ∂ðg�; reÞ
����: ð14Þ

Here g�, the normalized redshift factor, is defined as

g� ¼ g − gmin

gmax − gmin
; ð15Þ

where gmax ¼ gmaxðre; iÞ and gmin ¼ gminðre; iÞ are, respec-
tively, the maximum and the minimum values of the redshift
factor g at a constant re and for a given viewing angle of the

FIG. 1. Schematic of the BH-accretion disk-corona system. The
BH is colored black, the disk gray, and the corona yellow. Various
radiation components are labeled. The inset shows conversion of
incident radiation in to reflected radiation.

1Various other disk structures are possible. Studies of their
effect on the reflection spectrum in the presence of non-Kerr
metrics is an ongoing effort [61,62].

2More details can be found on the public version webpage at
Refs. [63,64].
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observer. The re integral ranges from the inner to the outer
edge of the disk, whereas the g� integral ranges from 0 to 1.
Since there are twoways to go from g� ¼ 0 to g� ¼ 1 along a
constant re ring, there are two branches of the transfer

function and the integral in Eq. (13) needs to be performed
along both the branches. Furthermore, if the emission from
the disk is not isotropic, then we also need to calculate ϑe at
each re and g� along each branch, and Eq. (13) will be

FoðνoÞ ¼
1

D2

Z
rout

rin

Z
1

0

πre
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ð1 − g�Þp fð1Þðg�; re; iÞIeðνe; re; ϑð1Þe Þdg�dre

þ 1

D2

Z
rout

rin

Z
1

0

πre
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�ð1 − g�Þp fð2Þðg�; re; iÞIeðνe; re; ϑð2Þe Þdg�dre: ð16Þ

The transfer function separates the spacetime effects like
the motion of gas and photons (encoded in the transfer
function) from the local microphysics (encoded in the
specific intensity at the emission point), and thus acts as an
integration kernel for the calculation of flux. Such a
separation enables quick computation of the reflection
spectrum from a grid of transfer functions for any intensity
profile, without the need to retrace photon trajectories,
making analysis of x-ray reflection data with RELXILL_NK

possible in practice.
These transfer functions and emission angles are com-

puted once and stored in a FITS table, and only the
integral in Eq. (16) needs to be calculated during data
analysis. The table has a grid in three dimensions: spin a�
(30 values), deformation parameter δi (30 values), and
inclination angle i (22 values). The grid points in the a�
and i dimension are nonuniform, mutually independent,
and follow the scheme in RELXILL. In particular, a� ranges
from −0.998 to 0.9982 and i ranges from 3° to 89°. The
range in the δi dimension, in some cases, depends on
the spin parameter; this is to ensure that the restric-
tions on δi, given in Sec. II A, are followed. We use the
following scheme for all δi: the largest extent of δi at
each spin is −5 to 5, distributed uniformly between the
two bounds. If the restriction given in Sec. II A is stronger
than this bound, the range of that δi at that spin is set
according to the restriction. Examples of this scheme can be
seen in Fig. 2, where the disallowed region is marked with
stripes.
At each grid point [namely a specific (a�, δi, i) on the

grid described above], the accretion disk is discretized in
100 values of re, between rISCO and 1000M, and 20 values
of g� on each branch, between 10−3 and 1 − 10−3.3 Photons
are backtraced from the observer plane (placed at a large
distance where the spacetime is effectively flat) to the
accretion disk by solving the geodesic equations using a
fourth-order Runge-Kutta scheme. An adaptive algorithm
fine-tunes the coordinates on the observer plane so that the
photon when backtraced lands at the exact re. For each such

“central” photon, the redshift and emission angle are
calculated, and four photons, closely spaced in the observer
plane, are launched to calculate the Jacobian and sub-
sequently the transfer function. An interpolation routine
then computes these quantities at the 20 values of g� and
stores them in the FITS table.

FIG. 2. Impact of the deformation parameter on the ISCO
radius. The horizontal axis shows the values of the BH spin, and
the vertical axis shows the values of δ1 (top) and δ2 (bottom),
respectively. The colorbar gives the values of the ISCO radius.
The hatched area is parameter space excluded from analysis (see
Secs. II C and II A).

3Since the Jacobian in the transfer function diverges at g� ¼ 0
and 1, we offset the values by 10−3.
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III. QUALITATIVE ANALYSIS OF DEVIATION
PARAMETERS

We now look at the qualitative effect of the deformation
parameters on some typical observables and quantities in x-
ray reflection spectroscopy to get some intuition on how the
observables are affected by the different kind of deforma-
tions, and to anticipate when, if at all, they can be used to
estimate the parameters.
One of the most important quantities is the ISCO. Since

the emissivity profile has a radial falloff, radiation from the
innermost region has a significant influence on the x-ray
spectra. The influence of the deformation parameters drops
off radially as well, manifesting most prominently close to
the horizon. Theoretically, the inner edge of the disk is
assumed to be at ISCO within the Novikov-Thorne thin-
disk models [60]. Observationally too, disks in thermal
state and accreting at ∼5% − 30% of the Eddington limit
are expected to be bounded by the ISCO [68,69]. Thus, the
ISCO serves as a proxy for determining constraints on
deformation parameters with typical x-ray data. For axi-
symmetric metrics, the calculation of the ISCO radius
involves only the gtt, gϕϕ, and gtϕ components of the metric
in the equatorial plane (see, for instance, Appendix A.3 in
[15]). Thus, among the six deformation parameters under
consideration here, only δ1 and δ2 influence the ISCO
radius [see Eq. (1)], while δ3, δ4, δ5, and δ6 have no effect
(but they do affect other quantities like the redshift and the
reflection spectrum, as we will see shortly). Figure 2 shows
how the ISCO radius changes with δ1 and δ2 in the top and
bottom panels, respectively. Since the BH spin also has a
strong effect on the ISCO, and in x-ray spectroscopy
we typically measure both spin and deformation, each
panel shows the variation in the ISCO radius on a spin-
deformation parameter axes (a� − δ1 in the top panel,
a� − δ2 in the bottom panel). In both cases, small ISCOs
(rISCO ≲ 2M) are confined to high spins, implying good
estimates of a� are possible with x-ray data. For larger
ISCO, the contours are spread over large ranges of a�,
making good spin estimates unlikely. For both δ1 and δ2,
the ISCO contours stretch over a wide range, making
precise estimation very difficult. The only exception is very
small ISCOs (rISCO ≲ 1.5M) for which both δ1 and δ2 are
confined to a small range.
We now look at the primary observable in x-ray

reflection spectrocopy and the output of the RELXILL_NK

model. Figure 3 shows the reflection component of the flux
from a typical BH-disk system for various δis. Each panel
shows one specific δi, and within each panel spectra for
three different values of the δi parameter are shown.
Remaining model parameters are kept constant in all panels
(and listed in the figure caption). In particular, a� is set to
0.99 and q to 6, since x-ray reflection spectroscopy is most
useful for performing tests of gravity in systems with very
high BH spins and steep emissivity profiles [32,70]. In
each panel, we plot the spectra for zero deformation

(δi ¼ 0) and positive/negative deformation (δi ≶ 0). The
positive/negative deformation value is typically set to�2.5,
except when the range of δi restricts it to a smaller
deformation (see, e.g., Fig. 2 and Sec. II C). Several
features can be seen in the plots. The spectrum is very
sensitive to positive δ1, while negative values of δ1 are
severely restricted and the spectrum does not change much
for the most negative δ1 allowed. In the δ2 case, the
spectrum is very sensitive to negative values of δ2, while
positive values have a moderate effect. δ3 also has a
moderate-to-strong effect on the spectrum for negative
values, whereas positive δ3 affects the spectrum rather
weakly. δ4 has negligible effect for either positive or
negative values, but δ5 has a strong effect for positive
values. Finally, δ6 has a strong effect on the spectrum for
negative values, whereas positive values do not affect the
spectrummuch. In each panel, we also plot the spectra from
RELLINE [71], which includes only the Kerr metric, to
facilitate comparison of the zero deformation case with the
Kerr case. For all δis, the zero deformation case matches
very well with the Kerr case.
The ability of x-ray spectroscopy, and in fact any

technique, to constrain parameters depends not only on
the effect of the parameter on the relevant observable but
also on the degeneracy among the parameters in terms of
their effect on the observable. In particular, above we
looked at the effect of δi on the reflection spectra at
fixed BH spin. But it is well known that spin and the
deformation parameter affect the spectra in a somewhat
similar way, resulting in a degeneracy. For a statistically
robust parameter estimation, it is critical to ensure that all
degeneracies are accounted for. We will see instances of
this in the next sections where we estimate δi from
astrophysical data.

IV. SPECTRAL ANALYSIS OF ARK 564 DATA

In this section, we use our newly developed model to
analyze an x-ray observation of the supermassive BH in
Ark 564 [72].

A. Review

Ark 564 is classified as a narrow line Seyfert 1 galaxy at
redshift z ¼ 0.0247. Since the first observations with
XMM-Newton in 2000=2001 [73], and since it appears
as a very bright source in the x-ray band, it has been studied
by several authors [74–77]. It is a good first candidate for
tests of general relativity with a new metric for the
following reasons. First, previous studies have shown
that the inner edge of the disk may be very close to the
central object, which maximizes the signatures of the
strong gravity region [72]. Second, the source has a simple
spectrum. There is no obvious intrinsic absorption to
complicate the determination of the reflected emission.
The same dataset was analyzed by some of us in Ref. [18]
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to constrain the Johannsen parameters α13 and α22 and in
Ref. [27] to constrain the Johannsen parameter ϵ3. Therein,
this source and this dataset was found to be easy to analyze
and provided good constraints on the deformation param-
eters. There are other x-ray sources with the potential to
provide stronger constraints than this data (e.g., GRS
1915þ 105 [78], MCG-06-30-15 [24]), and their analysis
with the KRZ metric is underway.

B. Observations and data reduction

Suzaku observed Ark 564 on June 26–28, 2007 (Obs. ID
702117010) for about 80 ks. For low energies (<10 keV),
Suzaku has four coaligned telescopes that are used to collect
photons onto its CCD detectors x-ray imaging spectrometer
(XIS). XIS is comprised of four detectors; XIS0, XIS2, and
XIS3 are front illuminated andXIS1 is back illuminated.We
only used data from the front-illuminated chips because

FIG. 3. Impact of δi on the reflection spectrum. Also plotted is the spectrum in the Kerr case for comparison with δi ¼ 0 in each case.
The fixed parameters are these: spin ¼ 0.99, inclination ¼ 30°, ionization log ξ ¼, iron abundance AFe ¼, photon index Γ ¼, cutoff
energy Ecut ¼, and emissivity index q ¼ 6. The disk extends from rin ¼ rISCO to rout ¼ 400M.
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XIS1 has a lower effective area at 6 keV and a higher
background at higher energies. XIS2 data were not used in
our analysis because of the anomaly after November
9, 2006.
We have used HEASoft version 6.24 and CALDB version

20180312 for the data reduction. AEPIPELINE script of the
HEASoft package has been used for reprocessing and screen-
ing of the raw data. The ftool XSELECTand ds9 were used
to extract the XIS source and background spectrum from a
3.5 arc minute radius. The background region was selected
as far as possible from the source so as to avoid contami-
nation. The RMF file was generated using XISRMFGEN
and the ARF file which corresponds to effective area of the
telescope was generated using XISSIMARFGEN. At last,
the final source spectrum, background spectrum and
response file were generated by combining the data from
XIS0 and XIS3 using ADDASCASPEC. The data was then
grouped using GRPPHA to get minimum 50 counts per bin
so as to use χ2 statistics in our spectral analysis.We have also
excluded the energy range between 1.7–2.5 because of
calibration issues.

C. Modeling and results

We fit the data with Xspec v12.10.0c. The data has been
analyzed before, with models that incorporate the Kerr
metric [76] and with those incorporate non-Kerr metrics

[18,27]. In particular, we will use the findings of Ref. [18],
where a comprehensive analysis has been done of the
model combinations, and the optimal combination found
had a relativistic and a nonrelativistic reflection component.
Of course, there is no a priori reason to assume that the
models used to fit some data must be the same for all non-
Kerr parameters, so we follow the standard approach by
first fitting the power-law component (see Sec. II B and
Fig. 1), followed by the reflection components.

Model 1: TBABS*ZPOWERLW

TBABS describes the galactic absorption [79] and we fix
the galactic column density to NH ¼ 6.74 × 1020 cm−2

[80]. ZPOWERLW describes a redshifted photon power-
law spectrum. The best-fit values are reported in the second
column in Table I, and the data-to-model ratio plots are
presented in the top panel in Fig. 4. An excess of photons at
low energies and a broad iron line around 6.4 keV can be
seen in the panel, suggesting the presence of a reflected
component. Invoking this paradigm, we proceed to fit the
spectrum using the reflection models RELXILL_NK and
XILLVER.

Model 2: TBABS*(ZPOWERLW + RELXILL_NK + XILLVER)

The power-law component is still modeled with
ZPOWERLW as before, while the reflection is modeled with
RELXILL_NK and XILLVER. For the fit, the disk is assumed to
extend from the ISCO to 400M. The emissivity profile is

TABLE I. Summary of the best-fit values for the spectral models 1 and 2, the latter for each δi case. Uncertainties are reported at
90% confidence level. All values are reported up to two significant digits after the decimal, except a� and δi, which are reported to three
significant digits after the decimal. P indicates the relevant parameter being unbounded up to its explored range and ϵ indicates
uncertainty too small up to the precision reported here. See the text for more details.

Model 1 2ðδ1Þ 2ðδ2Þ 2ðδ3Þ 2ðδ4Þ 2ðδ5Þ 2ðδ6Þ
TBABS

NH=1020 cm−2 6.74� 6.74� 6.74� 6.74� 6.74� 6.74� 6.74�

ZPOWERLAW

Γ 2.78þϵ
−0.01 2.86þ0.05

−0.04 2.86þ0.06
−0.04 2.86þ0.06

−0.04 2.85þ0.01
−0.03 2.87þ0.04

−0.03 2.87þ0.05
−0.02

N 0.68 0.39þ0.03
−0.04 0.39þ0.02

−0.04 0.39þ0.03
−0.06 0.39þ0.02

−0.03 0.39þ0.02
−0.03 0.39þ0.02

−0.04

RELXILL_NK

q � � � 8.20þP
−0.05 8.66þP

−0.05 8.57þ0.79
−0.49 8.52þ0.67

−0.36 8.83þ0.44
−0.63 8.39þ0.48

−0.36

a� � � � 0.998þP
−0.022 0.998þP

−0.010 0.998þP
−0.012 0.986þ0.009

−0.022 0.986þ0.006
−0.003 0.986þ0.005

−0.013
i [deg] � � � 27þ2

−P 27þ3
−P 27þP

−P 27þ4
−P 29þP

−P 27þP
−P

log ξ � � � 3.00þ0.12
−0.53 3.00þ0.07

−0.18 3.00þ0.09
−0.24 3.00þ0.04

−0.16 3.00þ0.03
−0.16 2.98þ0.08

−0.11

AFe � � � 0.83þ0.13
−0.18 0.84þ0.14

−0.09 0.85þ0.14
−0.18 0.85þ0.07

−0.15 0.81þ0.09
−0.09 0.88þ0.09

−0.09

δ type � � � δ1 δ2 δ3 δ4 δ5 δ6
δ value � � � 0.197þ0.087

−0.464 −0.254þ0.469
−0.117 −0.414þ1.452

−0.035 2.928þP
−3.475 −0.896þ0.818

−P −0.610þ0.510
−4.262

N=10−2 � � � 3.56þ3.61
−0.52 3.51þ0.84

−0.28 3.51þ3.06
−0.44 3.28þ0.50

−0.33 3.91þ0.31
−0.28 3.85þ0.31

−0.28

XILLVER

N=10−3 � � � 5.20þ1.32
−1.64 5.26þ1.80

−1.59 5.25þ1.83
−1.66 5.28þ1.59

−1.74 5.32þ1.62
−1.80 5.16þ1.62

−1.80

χ2=dof 3.30 1.10 1.10 1.10 1.10 1.10 1.10
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assumed to be a simple power law, whose index q is a free
parameter. The photon index in RELXILL_NK is tied to
ZPOWERLWand the cutoff energy frozen to the default value
(300 keV). The ionization and iron abundance of the disk,
along with the BH spin and deformation parameter, are kept
free. The parameters of XILLVER are mostly fixed or tied
(ionization fixed to zero, iron abundance, cutoff energy,
inclination tied to RELXILL_NK, photon index tied to
ZPOWERLW), the only free parameter is the norm. The fit
is performed six times, once for each δi.
During the fit, inclination had to be handled with care,

for the following reason: previous constraints on inclination
with this (or combined with this) observation of Ark 564
have not been very good, either unbounded from below (see
Table I of Ref. [18] and Table I of Ref. [76]) or very precise
but inconsistent (see Table II of Ref. [18], Table II of
Ref. [27] and Table I of Ref. [76]). Keeping inclination free
in our analysis, we run into similar issues; i.e., either the
parameter is largely unbounded or stuck at the smallest
allowed value (∼3°) with little uncertainty. Instead, we
bound it to lie around 30° with a 10% uncertainty (i.e.,
27° < i < 33°), which encompasses to a large extent
estimates obtained with a different observation of Ark
564 [76,77] made with NuSTAR, and with the Suzaku
observation and different deformation parameters [18,27].
The data-to-model ratios are plotted for each iteration of

model 2, i.e., for each δi, in Fig. 4. For each best-fit model,

parameter values are listed in Table I, with associated
uncertainty at 90% confidence level (C.L.). We find that,
in all cases, the fit is good with a χ2red close to 1 and no
major unmodeled features in the ratio plots. We find a
high value for the photon index q, that is, most of the
radiation seems to come from the very inner part of the
accretion disk, consistent with previous analyses [18,27].
The photon index is slightly higher than Ref. [76] (both
being higher than in Ref. [77]) but is consistent for each
δi case. Ionization is consistent amongst the model 2
iterations and close to previous analyses (lower than
Ref. [27], higher than Ref. [18]), The spin parameter a�
is always very close to 1. This is consistent with the
previous analysis results of Ark 564 and suggests that it
is a high spin BH. Iron abundance is close to solar and
matches well with Ref. [18] (see also Ref. [76]). The
inclination is, in most cases, pegged to the smallest
allowed value (27°) and, in some cases, unbounded
within its restricted range.

V. DISCUSSION

The primary aim of this analysis is to study the spacetime
metric around the supermassive BH in Ark 564 and
estimate the deformation parameters δi. Table I lists the
best-fit value of each δi and the associated uncertainty (at
90% C.L.). In particular,

FIG. 4. Data to best-fit model ratios for model 1 (top panel) and 2 for each δi (rest of the panels), as defined in Sec. IV B. The
corresponding parameter estimates are listed in Table I. See the text for more details.
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−0.27 < δ1 < 0.28;

−0.37 < δ2 < 0.22;

−0.45 < δ3 < 1.04;

−0.55 < δ4;

−1 < δ5 < −0.08ð0.45Þ;
−4.9 < δ6 < −0.10ð0.36Þ:

As we saw in the qualitative discussion of Sec. III, different
parameters affect the reflection spectrum differently and
thus, using the reflection data of Ark 564, are constrained to
different levels. Specifically, δ1 is strongly constrained
on the positive side; whereas, on the negative side, the
bound comes from the spacetime regularity conditions of
Sec. II A. δ2 is strongly constrained on the negative side
(considering the best-fit value of δ2, −0.25) and moderately
constrained on the positive side, while δ3 is constrained
strongly on the negative side and almost unconstrained on
the positive side. δ4 has almost no effect on the reflection
spectrum and consequently is very poorly constrained, in
fact the upper bound exceeds the grid size, which is at
δ4 ¼ 5. The best fits for δ5 and δ6 are both quite far from 0,
though both have large uncertainties with δ5 hitting the
theoretical limit (based on regularity of spacetime) and δ6
very close to the computational limit (at δ6 ¼ −5). In both
δ5 and δ6 cases, the Kerr solution is recovered at 99% C.L.
(shown in parentheses).
The KRZ metric has been used to perform tests of GR

with other experimental techniques as well. Gravitational
waves, in particular, have been used extensively in recent
years to test GR in the strong field regime. The spherically
symmetric version of the KRZ metric [81] has been used in
Ref. [82] to put constraints on one of its deformation
parameters, using data from the first two observing runs of
LIGO/VIRGO. The parameter analyzed in Ref. [82], a1, is
the same as δ1 of the present work. Since all the other
parameters in that work are set to their GR value, the
estimates obtained there can be faithfully compared with
those obtained in the present work. Comparing the con-
straint on δ1 from above with Table I in Ref. [82], we see
that the constraints of the present work are of the same
order as Ref. [82]: better than those obtained from the
gravitational wave event GW170104 and worse than the
other four events. It is important to remember though that
the study in Ref. [82] was done under the assumption of
spherically symmetric BHs, which certainly will not be
valid for all the gravitational wave events, and the inclusion
of spin will worsen the estimates there. Another recent
work [83] uses the results from the observation of the
supermassive BH at the center of the M87 galaxy, reported
by the Event Horizon Telescope collaboration [11], to place
constraints on the leading order strong-gravity deformation
parameter, which is the same as our δ1. The constraints

obtained there are a few times weaker than those reported
here. The constraints are summarized in Table II.
It is well known that model parameters can be degen-

erate, so while estimating them one needs to be careful
in handling these degeneracies. We take care of this by
marginalizing over all the free model parameters, and the
uncertainties reported in Table I are therefore robust
statistically (systematic uncertainties are a different story,
see the discussion later). In particular, there exists a strong
degeneracy between a� and the deformation parameters,
since both appear in the metric and, consequently, affect the
spacetime in a somewhat similar way. Therefore, any test of
GR has to contend with the fact that the simultaneous
measurement of both spin and non-Kerr parameters will
have an intrinsic degeneracy, resulting in weaker con-
straints on each parameter (than if the BH was not spinning
or if the non-Kerr parameters were identically zero).
Figure 5 shows this for the fits made with the Ark 564
data discussed above,4 with each panel showing the relative
degeneracy between a� and one of the δi. The red, green,
and blue lines indicate, respectively, the 68%, 90%, and
99% confidence level contours. Generically, we can say
that the constraints on each δi would be very different if the
degeneracy with spin was not taken into account. For
instance, we see in the panel with δ6 (bottom right panel)
that at fixed spin (a� ¼ 0.99), δ6 ¼ −2 is distinct from
δ6 ¼ 0, excluded at more than 99% C.L. This agrees with
the qualitative analysis of Sec. III. But the analysis there
was limited to constant BH spin. When the spin is allowed
to vary, a larger range of δ6 (δ6 ¼ −4 at a� ¼ 0.97)
becomes degenerate. The degeneracy manifests in another
way in the contours between a� and δ1 (top left panel) and
a� and δ2 (top right panel), respectively. As discussed in

TABLE II. Lower and upper bounds on the KRZ deformation
parameter δ1 from three different techniques. In the case of
gravitational waves, the best constraints are reported, as obtained
from the event GW191226. In the other two cases, only one
source/observation has been used as of now to estimate the
constraint.

Lower
bound

Upper
bound Source Technique

−0.16 þ0.17 GW151226 Gravitational
wave inspiral [82]

−0.27 þ0.28 Ark 564 This work
−1.2 þ1.3 M87� BH shadow size [83]

4Specifically, after obtaining the best-fit model in each δi case,
we use Xspec’s steppar command over two dimensions, a� and
δi, which steps through a series of pairs of (a�; δi) values, finds a
new fit at each step by marginalizing over all other free
parameters, and reports the χ2 at each step. The contours in
the plots represent the change in χ2 at each step relative to the χ2
of the original best fit.
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Sec. III, the ISCO contour can be used as a proxy for the
degeneracy, especially near the Kerr solution. In both the
panels, we find that the degeneracy contours follow
the constant ISCO contours close to the Kerr solution
(see Fig. 2). For larger deviations away from Kerr, the
spectrum (which is affected by several things and not just
the ISCO location) becomes distinct, and the ISCO ceases
to be the driver of degeneracy.

One of the aspects beyond the scope of this work that is
important for parameter estimation is systematic uncertain-
ties. They arise from the fact that the analysis makes a series
of assumptions. The model, for example, assumes a thin
disk described by the Novikov-Thorne model [60]. For
astrophysical systems, this is a valid assumption only when
the accretion rate is not too high (nor too low) [84,85].
Investigations with thick disks have shown that this

FIG. 5. Degeneracy contours of the spin parameter a� and the KRZ deformation parameter δi, respectively, within model 2 (see
Sec. IV B). The red, green, and blue lines indicate, respectively, the 68%, 90%, and 99% confidence level contours for two relevant
parameters. The grey region indicates parameter space which is excluded (see Sec. II C). The Kerr solution lies at δi ¼ 0 in each plot.
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assumption can potentially cause systematic error in spin
up to 0.2 [86] and 0.4 [87], and more than 1 for deformation
parameters [61]. Another assumption, that particles move
in circular orbits on the disk can also lead to systematic
errors [88]. Higher order effects in the context of disk
reflection, neglected in the current models, can be impor-
tant in some cases [89–91]. The model is limited to only
one nonzero deformation parameter. Degeneracy among
the various deformation parameters is, therefore, beyond
the scope of the model. While this is fine for verifying GR,
mapping to BH metrics from alternative theories of gravity
will certainly involve multiple deformation parameters. In
this context, a recent study based on gravitational wave
ringdown [92] has shown the severe weakening of con-
straints on each when multiple deformation parameters are
set free.
We emphasize that this work is an initial exploration with

several aspects to be explored in future. These include, but
are not limited to, studies involving more parameters [e.g.,
estimating ϵ0 parameter, see Eq. (1)], estimating multiple
deformation parameters simultaneously (e.g., as done in
[92]), employing more sophisticated disk geometry (e.g., as
done in [62]), studying more astrophysical sources (e.g.,
MCG-06-30-15 [24,70,93], GRS 1915þ 105 [68,78,94],

GX 339-4 [19,95,96]), and exploring potential synergy
with other observational techniques [82,92,97].
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