28 research outputs found

    Tecnología celular en minería

    No full text
    TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN ADMINISTRACIÓNDauros, Víctor, [Parte I], Arenas, César, [Parte II]El presente Plan de Negocios se basa en la oportunidad de establecer una empresa que entregue un servicio de mensajería celular a través de la tecnología Cell Broadcast, que permite la entrega de información a todos los equipos móviles (celulares) en una zona geográfica determinada. Esta mensajería tiene como objetivo el apoyo de coordinar procesos altamente críticos en relación con los riesgos a las personas e información clave, en el menor tiempo posible, emitida por las áreas de prevención de riesgos de la gran minería en Chile y también haciendo seguimientos mediante generación de estadísticas, bases de datos e informes. Hoy en día, las áreas de prevención de riesgos y salud ocupacional cuentan con herramientas tecnológicas de soporte gestionados por los mismos usuarios y planillas de control. Esto genera una importante oportunidad para que el emprendimiento pueda ser posicionado como Business Partner de las áreas de prevención de riesgos y entregar un servicio que permita el envío masivo de comunicación, que permita difusiones y monitoreo al instante. Para la industria minera donde la dotación global es de aproximadamente 150.000 trabajadores y cada operación cuenta con 1000 personas, genera naturales disminuciones en cuanto a la velocidad de comunicación y reacción frente a nueva información Los clientes de este sector tienen una importante inversión presupuestaria en el ítem de Prevención de Riesgos. A modo de ejemplo, CODELCO que engloba 8 de las 29 operaciones más importantes de la gran minería, destina un 13% de su presupuesto anual en Sustentabilidad que es donde se encuentra la Salud Ocupacional. El tamaño de mercado que incluye tanto a empresas mandantes como colaboradoras es de USD 15,0MM hasta USD45,0MM dependiendo del cobro de un servicio básico o premium. La participación de mercado esperada para el quinto año de funcionamiento es de un 17,4%, lo que se traduce en ingresos de hasta USD 3,2MM anuales. El financiamiento del proyecto tiene un requerimiento de capital de USD1,2MM, los que se distribuyen en Capital de Trabajo (34,5%), Inversión (16,5%) y Déficit Operacional (49%). La empresa generará un VAN USD4,6MM con una TIR de 86%, siendo un factor clave para el éxito, el poder lograr pruebas funcionales en un periodo menor a 6 meses

    Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity

    No full text
    Prokaryotes release membrane vesicles (MVs) with direct roles in disease pathogenesis. MVs are heterogeneous when isolated from bacterial cultures so Density Gradient Centrifugation (DGC) is valuable for separation of MV subgroups from contaminating material. Here we report the technical variability and natural biological heterogeneity seen between DGC preparations of MVs for Mycobacterium smegmatis and Escherichia coli and compare these DGC data with size exclusion chromatography (SEC) columns. Crude preparations of MVs, isolated from cultures by ultrafiltration and ultracentrifugation were separated by DGC with fractions manually collected as guided by visible bands. Yields of protein, RNA and endotoxin, protein banding and particle counts were analysed in these. DGC and SEC methods enabled separation of molecularly distinct MV populations from crude MVs. DGC banding profiles were unique for each of the two species of bacteria tested and further altered by changing culture conditions, for example with iron supplementation. SEC is time efficient, reproducible and cost effective method that may also allow partial LPS removal from Gram-negative bacterial MVs. In summary, both DGC and SEC are suitable for the separation of mixed populations of MVs and we advise trials of both, coupled with complete molecular and single vesicle characterisation prior to downstream experimentation

    Uropathogenic <i>Escherichia coli</i> Releases Extracellular Vesicles That Are Associated with RNA

    No full text
    <div><p>Background</p><p>Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection.</p><p>Methods and Results</p><p>Using the uropathogenic <i>Escherichia coli</i> (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different ‘size’ RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of <i>csrC</i>. It was estimated that 1% of MV RNA cargo is delivered into cultured cells.</p><p>Conclusions</p><p>These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process.</p></div

    Bacteria release membrane vesicles that associate with protein and RNA.

    No full text
    <p>A. Contrast electron microscopy of budding UPEC with a white arrow pointing to the released MV. B. Contrast electron microscopy of isolated vesicle preparation by ultracentrifugation. C. Coomassie stained protein gel of MVs isolated from UPEC D. Agilent Tapestation gel for RNA from three replicate MVs isolated from UPEC plus one donor cell RNA. Intact ribosomal bands are labelled 23S and 16S as are the small RNA fragments. The green line marks the internal loading marker.</p

    UPEC MV and their RNA cargo are delivered into human bladder cells <i>in vitro</i>.

    No full text
    <p>A. Confocal image of 5637 cells (red) stained with DAPI blue nuclear stain after treatment for 15 hr with 50μg/mL PKH26 green vesicles. B. Confocal image of 5637 cells (red) after treatment for 15 hr with 50μg/mL 5EU-labelled RNA vesicles (green with an arrow) C. Droplet digital RT-PCR validation of UPEC <i>csrC</i> rRNA into cells treated with 100μg/mL MVs across a 48 hr timeframe. Each treatment timepoint repeated in at least duplicate as represented by a closed spot. Red dotted lines mark the copies of <i>csrC</i> per μL from a standard curve of MV protein equivalents shown on the left.</p
    corecore