1,179 research outputs found
Search for hidden-photon dark matter with the FUNK experiment
Many extensions of the Standard Model of particle physics predict a parallel
sector of a new U(1) symmetry, giving rise to hidden photons. These hidden
photons are candidate particles for cold dark matter. They are expected to
kinetically mix with regular photons, which leads to a tiny oscillating
electric-field component accompanying dark matter particles. A conducting
surface can convert such dark matter particles into photons which are emitted
almost perpendicularly to the surface. The corresponding photon frequency
follows from the mass of the hidden photons. In this contribution we present a
preliminary result on a hidden photon search in the visible and near-UV
wavelength range that was done with a large, 14 m2 spherical metallic mirror
and discuss future dark matter searches in the eV and sub-eV range by
application of different detectors for electromagnetic radiation.Comment: Contribution to the 35th International Cosmic Ray Conference
ICRC2017, 10 to 20 July, 2017, Bexco, Busan, Korea. arXiv admin note: text
overlap with arXiv:1711.0296
First results of the air shower experiment KASCADE
The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector)
experiment are the determination of the energy spectrum and elemental
composition of the charged cosmic rays in the energy range around the knee at
ca. 5 PeV. Due to the large number of measured observables per single shower a
variety of different approaches are applied to the data, preferably on an
event-by-event basis. First results are presented and the influence of the
high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings,
Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D.
Vignau
2008-2009 President\u27s Report
The Linfield College President\u27s Annual Report is a collection of information about the year in review, including academics, student life and athletics, enrollment, finances, philanthropy, and leadership
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
On noise treatment in radio measurements of cosmic ray air showers
Precise measurements of the radio emission by cosmic ray air showers require
an adequate treatment of noise. Unlike to usual experiments in particle
physics, where noise always adds to the signal, radio noise can in principle
decrease or increase the signal if it interferes by chance destructively or
constructively. Consequently, noise cannot simply be subtracted from the
signal, and its influence on amplitude and time measurement of radio pulses
must be studied with care. First, noise has to be determined consistently with
the definition of the radio signal which typically is the maximum field
strength of the radio pulse. Second, the average impact of noise on radio pulse
measurements at individual antennas is studied for LOPES. It is shown that a
correct treatment of noise is especially important at low signal-to-noise
ratios: noise can be the dominant source of uncertainty for pulse height and
time measurements, and it can systematically flatten the slope of lateral
distributions. The presented method can also be transfered to other experiments
in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010,
Nantes, Franc
KCDC - The KASCADE Cosmic-ray Data Centre
KCDC, the KASCADE Cosmic-ray Data Centre, is a web portal, where data of
astroparticle physics experiments will be made available for the interested
public. The KASCADE experiment, financed by public money, was a large-area
detector for the measurement of high-energy cosmic rays via the detection of
air showers. KASCADE and its extension KASCADE-Grande stopped finally the
active data acquisition of all its components including the radio EAS
experiment LOPES end of 2012 after more than 20 years of data taking. In a
first release, with KCDC we provide to the public the measured and
reconstructed parameters of more than 160 million air showers. In addition,
KCDC provides the conceptional design, how the data can be treated and
processed so that they are also usable outside the community of experts in the
research field. Detailed educational examples make a use also possible for
high-school students and early stage researchers.Comment: 8 pages, accepted proceeding of the ECRS-symposium, Kiel, 201
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
- âŠ