21 research outputs found

    The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

    Get PDF
    The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory

    Allumer la lumière et ré-activer les souvenirs perdus…

    No full text
    International audienc

    Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation

    No full text
    International audienceVesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state

    VGLUT3 gates psychomotor effects induced by amphetamine

    No full text
    International audienceSeveral subtypes of modulatory neurons co-express vesicular glutamate transporters (VGLUTs) in addition to their cognate vesicular transporters. These neurons are believed to establish new forms of neuronal communication. The atypical VGLUT3 is of particular interest since in the striatum this subtype is found in tonically active cholinergic interneurons (TANs) and in a subset of 5-HT fibers. The striatum plays a major role in psychomotor effects induced by amphetamine. Whether and how VGLUT3-operated glutamate/ACh or glutamate/5HT co-transmissions modulates psychostimulants-induced maladaptive behaviors is still unknown. Here, we investigate the involvement of VGLUT3 and glutamate co-transmission in amphetamine-induced psychomotor effects and stereotypies. Taking advantage of constitutive and cell-type specific VGLUT3-deficient mouse lines, we tackled the hypothesis that VGLUT3 could gate psychomotor effects (locomotor activity and stereotypies) induced by acute or chronic administration of amphetamine. Interestingly, VGLUT3-null mice demonstrated blunted amphetamine-induced stereotypies as well as reduced striatal ∆FosB expression. VGLUT3-positive varicosities within the striatum arise in part from 5HT neurons. We tested the involvement of VGLUT3 deletion in serotoninergic neurons in amphetamine-induced stereotypies. Mice lacking VGLUT3 specifically in 5HT fibers showed no alteration to amphetamine sensitivity. In contrast, specific deletion of VGLUT3 in cholinergic neurons partially phenocopied the effects observed in the constitutive knock-out mice. Our results show that constitutive deletion of VGLUT3 modulates acute and chronic locomotor effects induced by amphetamine. They point to the fact that the expression of VGLUT3 in multiple brain areas is pivotal in gating amphetamine-induced psychomotor adaptations. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/
    corecore