383 research outputs found

    Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

    Get PDF
    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis

    RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes

    Get PDF
    Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018

    Characterization of ozone production in San Antonio, Texas, using measurements of total peroxy radicals

    Get PDF
    Observations of total peroxy radical concentrations ([XO2]&thinsp;≡&thinsp;[RO2]&thinsp;+&thinsp;[HO2]) made by the Ethane CHemical AMPlifier (ECHAMP) and concomitant observations of additional trace gases made on board the Aerodyne Mobile Laboratory (AML) during May 2017 were used to characterize ozone production at three sites in the San Antonio, Texas, region. Median daytime [O3] was 48&thinsp;ppbv at the site downwind of central San Antonio. Higher concentrations of NO and XO2 at the downwind site also led to median daytime ozone production rates (P(O3)) of 4.2&thinsp;ppbv&thinsp;h−1, a factor of 2 higher than at the two upwind sites. The 95th percentile of P(O3) at the upwind site was 15.1&thinsp;ppbv&thinsp;h−1, significantly lower than values observed in Houston. In situ observations, as well as satellite retrievals of HCHO and NO2, suggest that the region was predominantly NOx-limited. Only approximately 20&thinsp;% of observations were in the VOC-limited regime, predominantly before 11:00&thinsp;EST, when ozone production was low. Biogenic volatile organic compounds (VOCs) comprised 55&thinsp;% of total OH reactivity at the downwind site, with alkanes and non-biogenic alkenes responsible for less than 10&thinsp;% of total OH reactivity in the afternoon, when ozone production was highest. To control ozone formation rates at the three study sites effectively, policy efforts should be directed at reducing NOx emissions. Observations in the urban center of San Antonio are needed to determine whether this policy is true for the entire region.</p
    corecore