39 research outputs found

    The mechanical response of cold bent monolithic glass plates during the bending process

    Get PDF
    Cold bending of glass involves the straining of relatively thin glass components, (typically plates), at ambient temperatures, and is a low energy and cost effective manner of creating curvilinear forms required in modern glass applications. Cold bending is also popular because it is thought to eliminate the optical imperfections in curved glass plates that arise during alternative and more conventional thermal bending techniques. Experimental and numerical investigations on the cold bending of monolithic glass plates into anticlastic shapes are undertaken and described in this paper. The aim is to characterise the cold bending behaviour during the bending process and to evaluate the surface/optical quality of the curved plates. Two distinct phenomena of interest are observed: (i) a change in the deformation mode that under particular boundary and loading conditions lead to snapthrough buckling and; (ii) a local instability termed “cold bending distortion” that appears on curved plates when certain applied displacement limits are exceeded. This cold bending distortion is found to occur at stresses significantly below the fracture strength of the glass plate, but the distortions can be sufficiently large to breach optical serviceability requirements. An optical quality evaluation procedure for predicting the cold bending response and the resulting optical quality of monolithic glass plates are provided at the end of this paper.The authors gratefully acknowledge financial and technical support from Eckersley O'Callaghan, and financial support from the Research Fund for Coal and Steel of the European Community and the Engineering and Physical Sciences Research Council UK (EPSRC).This is the final version of the article. It first appeared from Elsevier via https://doi.org/ 10.1016/j.engstruct.2016.03.01

    Powder‐fed directed energy deposition of soda lime silica glass on glass substrates

    Get PDF
    © 2022 The Authors. Journal of the American Ceramic Society published by Wiley Periodicals LLC on behalf of American Ceramic Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Novel glass processing by powder-fed directed energy deposition was explored as a method of adding glass décor to glass surfaces and bottles. Consistent, semitransparent, single-line tracks of soda lime silica glass could be processed onto glass substrates of the same composition, without significant cracks forming in the substrate. A suitable processing window was found with laser power and scan speed showing independent effects on processing. Consideration of processing surface conditions and reduction of laser transmission through transparent substrates was necessary, and the use of an adhesive tape layer aided adhesion of glass feedstock to substrate surfaces. The work demonstrates the potential for a one-step method of glass bottle decoration for the packaging industry, with scope to create 3D designs of high geometric complexity and customizability on glass substrates, thereby adding value to glass packaging by brand differentiation without the high costs associated with molds and tooling.Peer reviewe

    Artificial ageing of glass with sand abrasion

    Get PDF
    The strength of glass is governed by the condition of its surface which deteriorates progressively as surface flaws accumulate on exposure to weathering action during its service life. Therefore, knowledge of the strength of naturally aged glass is crucial in order to ensure its safe use in load-bearing applications. Artificial ageing tests can be very useful in this regard, but they have traditionally focused on degradation in light transmittance properties rather than the strength of glass. Experimental testing has been undertaken in this study to investigate the effectiveness of a falling abrasive method for the artificial ageing of glass. Abrasive medium is allowed to fall freely on monolithic glass and induce a random surface flaw population. 390 annealed glass specimens grouped in 26 series were artificially aged using different combinations of ageing parameters. The specimens were subsequently subjected to destructive and non-destructive testing to determine the influence of each ageing parameter and to establish a combination that produces strength characteristics similar to those of naturally aged glass. Existing artificial ageing recommendations were found to significantly overestimate design strengths by up to 253% at low probabilities of failure, Pf = 0.008 and are therefore, deemed unsafe. However, it was found that the falling abrasive method using a different combination of ageing parameters provides good correlation to the strength of naturally aged glass.The authors gratefully acknowledge financial and technical support from Eckersley O’Callaghan, and financial support from the Engineering and Physical Sciences Research CouncilUK (EPSRC) and Onassis Foundation

    Laser powder bed fusion of soda lime silica glass: Optimisation of processing parameters and evaluation of part properties

    Get PDF
    © 2021 The Authors. Published by Elsevier B.V. his is an open access article under the CC BY license. https://creativecommons.org/licenses/by/4.0/Glass has a number of attractive properties, such as transparency, chemical resistance, good thermal stability and high electrical resistivity, that make it a favourable material for a range of applications, including medical technology, electronics, chemical and pharmaceutical industries. However, compared to metals and polymers, the additive manufacturing of glass is still at a primitive stage. The inherent material properties of glass, i.e. its amorphous structure, lack of ductility and high processing temperatures, make processing of glass by additive manufacturing challenging. This paper describes the laser powder bed fusion of a soda lime silica glass. Optimisation of the laser powder bed fusion process was undertaken and the physical and mechanical properties of the manufactured parts were characterised revealing an average porosity of 12%, a mean flexural strength of 6.5 MPa and a fully amorphous structure. Feasibility examples were successfully demonstrated, indicating that geometrically complex shapes are possible. Even though the manufactured parts are opaque, they could potentially find use in applications where the need for chemical inertness and geometrical complexity surpass the need for transparency as in the chemical and pharmaceutical industries e.g. in the form of continuous flow reactors or structured catalysts.Peer reviewedFinal Published versio

    Additive manufacturing of glass with laser powder bed fusion

    Get PDF
    Its transparency, esthetic appeal, chemical inertness, and electrical resistivity make glass an excellent candidate for small‐ and large‐scale applications in the chemical, electronics, automotive, aerospace, and architectural industries. Additive manufacturing of glass has the potential to open new possibilities in design and reduce costs associated with manufacturing complex customized glass structures that are difficult to shape with traditional casting or subtractive methods. However, despite the significant progress in the additive manufacturing of metals, polymers, and ceramics, limited research has been undertaken on additive manufacturing of glass. In this study, a laser powder bed fusion method was developed for soda lime silica glass powder feedstock. Optimization of laser processing parameters was undertaken to define the processing window for creating three‐dimensional multilayer structures. These findings enable the formation of complex glass structures with micro‐ or macroscale resolution. Our study supports laser powder bed fusion as a promising method for the additive manufacturing of glass and may guide the formation of a new generation of glass structures for a wide range of applications

    Artificial ageing of glass with sand abrasion

    No full text
    The strength of glass is governed by the condition of its surface which deteriorates progressively as surface flaws accumulate on exposure to weathering action during its service life. Therefore, knowledge of the strength of naturally aged glass is crucial in order to ensure its safe use in load-bearing applications. Artificial ageing tests can be very useful in this regard, but they have traditionally focused on degradation in light transmittance properties rather than the strength of glass. Experimental testing has been undertaken in this study to investigate the effectiveness of a falling abrasive method for the artificial ageing of glass. Abrasive medium is allowed to fall freely on monolithic glass and induce a random surface flaw population. 390 annealed glass specimens grouped in 26 series were artificially aged using different combinations of ageing parameters. The specimens were subsequently subjected to destructive and non-destructive testing to determine the influence of each ageing parameter and to establish a combination that produces strength characteristics similar to those of naturally aged glass. Existing artificial ageing recommendations were found to significantly overestimate design strengths by up to 253% at low probabilities of failure, Pf = 0.008 and are therefore, deemed unsafe. However, it was found that the falling abrasive method using a different combination of ageing parameters provides good correlation to the strength of naturally aged glass
    corecore