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Strength data frommacroscopically identical glass specimens is commonly described by a two-parameter
Weibull distribution, but there is lack of research on the methods used for fitting strength data to the
Weibull distribution. This study investigates 4 different methods for fitting data and estimating the
parameters of the Weibull distribution namely, good linear unbiased estimators, least squares regression,
weighted least squares regression and maximum likelihood estimation. These methods are implemented
on fracture surface strength data from 418 annealed soda-lime-silica glass specimens, grouped in 30
nominally identical series, including as-received, naturally aged and artificially aged specimens. The
strength data are evaluated based on their goodness of fit. Comparison of conservativeness of strength
estimates is also provided. It is found that a weighted least squares regression is the most effective fitting
method for the analysis of small samples of glass strength data.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Glass strength is governed by the condition of its surface,
including microscopic flaws on the surface of glass that may be
indiscernible to the naked eye. There is a large variation in fracture
strength obtained from seemingly identical specimens which are
produced, stored and tested destructively under the same condi-
tions. Therefore, destructive testing of several nominally identical
glass specimens and the subsequent statistical analysis of their
strength data is essential for establishing an accurate design
strength, corresponding to a sufficiently low probability of failure.
Glass is susceptible to sub-critical crack growth, therefore in order
to normalise the effects of glass specimens failing after different
load durations, the fracture strength data from the destructive
tests is often expressed as a time-equivalent strength. This is
achieved by converting the stress history exerted during the
destructive test over the time to failure, tf to an equivalent constant
stress, rf,ref, for a reference time period, tref, (60 s is a typical value)
as shown in Eq. (1) [1]:

Z tf

0
rnðtÞdt ¼

Z tref

0
rn

f ;ref dt ð1Þ

There are three statistical distributions that have historically
been used to describe strength data: Weibull, normal and lognor-
mal [2–5]. The 2-parameter Weibull distribution is often preferred
because: (a) it is more accurate in describing glass strength data
than a normal distribution [2] and; (b) is always more conservative
in the tail of the distribution than a lognormal distribution [3] (this
is also verified for the strength data used in the present study as
shown in Appendix B). Conservative estimates are more desirable
for engineering design applications. As a result the Weibull distri-
bution is the established way of describing glass strength data in
both research [5–11] and engineering applications [12–14].

The general equation for the cumulative distribution function
(CDF) of the Weibull distribution [15] is:

Pf ðrf ;60Þ ¼ 1� exp � rf ;60 � ru

h

� �b� �
ð2Þ

where b is the shape parameter, h is the scale parameter, rf,60 is the
equivalent fracture stress for a reference time period of 60 s and ru

is the location parameter.
The location parameter, ru, represents the stress level below

which thematerial never fails (i.e. Pf = 0). Safety reasons dictate that
ru is set to 0 as recommended in Trustrum and Jayatilaka [16] for
brittle materials. Therefore, Eq. (2) is reduced to a two-parameter
Weibull function and the CDF can be linearized (Εq. (3)) in the form
of y = bx + c by taking the logarithm of each side twice:

ln ln
1

1� Pf

� �� �
¼ b � lnr� b � ln h ð3Þ

Hence, the CDF becomes a linear plot of ln ln 1
1�Pf

� �� �
vs. lnr as

illustrated in Fig. 1, and where the gradient of the distribution is
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Fig. 1. Cumulative distribution function (CDF) of glass strength data.
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equal to the shape parameter, b and the intercept is �b�lnh. The
shape parameter, b, indicates the variability of the data and thus,
higher values of b lead to a steeper CDF and represent a smaller
scatter of strength in the data. The scale parameter, h, represents
the stress level, below which 63.2% of the specimens fail and
together with the shape parameter dictates the position of the
CDF along the horizontal axis.

There are various approaches for estimating theWeibull param-
eters from a given set of strength data. They can be classified either
as manual or computational methods. Manual calculations can be
performed by: (a) least square regression (LR); (b) weighted least
squares regression (WLR) and; (c) a linear approach based on good
linear unbiased estimators (GLUEs); while computational
(computer-based) methods are: (a) the maximum likelihood esti-
mation (MLE) and; (b) the method of moments estimation (MME).

The aim of this study is to review these different estimation
methods for Weibull parameters and to propose the most effective
method for the statistical analysis of small sized samples of glass
strength. To the best of the authors’ knowledge, this study is the
first to use real glass strength data in order to assess methods for
their statistical analysis. Therefore, the observations and conclu-
sions from this study are valuable for researchers and practitioners
who have performed destructive tests on a relatively small number
of nominally identical glass components and wish to perform a sta-
tistical analysis of the strength data. An overview of the existing
methods for estimating the Weibull parameters and goodness-of-
fit for glass strength data are first reviewed in Section 2. The exist-
ing methods (LR,WLR, GLUEs andMLE) are then implemented on 30
real data sets, obtained from destructive tests on naturally aged, as-
received and artificially aged glass in Section 3. The goodness-of-fit
and strength estimate results of each method are presented and
discussed in Section 4 and the conclusions are provided in Section 5.

2. Review of Weibull statistics methods

The two principal steps when performing a statistical analysis
are: estimating the statistical parameters and evaluating the
goodness-of-fit. These are reviewed in this section in the context
of a Weibull distribution for glass strength data.

2.1. Parameter estimation

The most commonly used approaches, within the Weibull
statistics community, for the estimation of the shape and scale
parameters of the Weibull distribution are described below.
2.1.1. Manual calculations methods
Equivalent strength data are ranked in ascending order (i = 1 to

n) for the manual calculation methods. Equal probabilities of fail-
ure, Pf, are assigned to each data point in cumulative form with
functions called probability estimators, Ei. The simplest forms of
probability estimators are E = i/n or E = (i � 1)/n but these estima-
tors eliminate the highest or lowest data point of the sample in
the CDF graph for Pf = 1 or Pf = 0 respectively; the highest/lowest
strength point are therefore, also eliminated during the estimation
of the Weibull parameters so that instead of n specimens, only (n
� 1) would be considered. Therefore, these estimators are avoided
and probability estimators of the following form are preferred
instead:

Ej ¼ i� Cj

nþ 1� 2Cj
ð4Þ

where Cj is a constant 0 � Cj < 1, i is the index of the ascending order
and n is the sample size. The following four probability estimators
(Ej, j = 1– 4, [17–19]) are most commonly used in Weibull statistics:

E1 ðmean rankÞ : C1 ¼ 0 ! E1 ¼ i
nþ 1

ð4aÞ

E2 Hazen’sð Þ : C2 ¼ 0:5 ! E2 ¼ i� 0:5
n

ð4bÞ

E3 ðmedian rankÞ : C3 ¼ 0:3 ! E3 ¼ i� 0:3
nþ 0:4

ð4cÞ

E4 ðsmall sampleÞ : C4 ¼ 0:375 ! E3 ¼ i� 0:375
nþ 0:25

ð4dÞ
2.1.1.1. Least Squares Regression (LR). The Weibull parameters are
determined in the Least Squares Regression method (LR), by mini-
mizing the sum of squared residuals of the x values about Eq. (3):

b ¼ n �Pn
i¼1½lnðriÞ � yi� �

Pn
i¼1ðlnriÞ �

Pn
i¼1ðyiÞ

n �Pn
i¼1½ðlnriÞ2� � ½Pn

i¼1ðlnriÞ�2
ð5aÞ

�b � ln h ¼
Pn

i¼1ðyiÞ � b�Pn
i¼1ðlnriÞ

n
ð5bÞ

However, LR implicitly applies the same unit weight to each
data point without accounting for the uncertainty of
y ¼ ln ln 1

1�E

� 	� 	
or Ei. and thus provide biased estimates.

2.1.1.2. Weighted Least Squares Regression (WLR). Weibull parame-
ters with smaller bias than those deriving from LR, can be obtained
(Eq. (6a) and (6b)) by introducing weight functions based on the
uncertainty of y and E within the LR method leading to a Weighted
Least Squares Regression, WLR [20].

b ¼
Xn

i¼1
Wi �

Xn

i¼1
½lnðriÞ � yi �Wi� �

Xn

i¼1
½lnðriÞ �Wi� �

Xn

i¼1
ðyi �WiÞXn

i¼1
Wi �

Xn

i¼1
½ðlnriÞ2 �Wi� � ½

Xn

i¼1
ðlnriÞ �Wi�

2

ð6aÞ

�b � ln h ¼
Pn

i¼1ðyi �WiÞ � b �Pn
i¼1½lnðriÞ �Wi�Pn

i¼1Wi
ð6bÞ

where Wi is the weight applied to each data point.
Various weight functions have been proposed over the years

[20–22] with Bergman’s (Eq. (7a), [20]) and Faucher & Tyson’s
weight function (Eq. (7b), [21]) being mostly used. Faucher and
Tyson’s (F&T) was found to produce the most accurate estimates
for data sets produced with Monte Carlo simulation [22–24]. How-
ever, these studies disagree on the choice of estimator used in con-
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junction with the F&T function; the two most accurate probability
estimators for small samples (n = 10–20) were found to be the
mean and median rank estimators (Eqs. (4a) and (4c), [22–24]).

Wi ¼ ð1� PiÞ � lnð1� PiÞ½ �2 ð7aÞ

Wi ¼ 3:3 � Pi � 27:5 � 1� ð1� Pf Þ0:025
h i

ð7bÞ
2.1.1.3. Good Linear Unbiased Estimators (GLUEs). Simple unbiased
estimators for the shape and the scale factor known as good linear
unbiased estimators (GLUEs, Eq. (8a) and (8b) for complete/uncen-
sored samples) were proposed by Bain [25,26]. This method is pre-
scribed in EN 12603:2002 [12] and uses an un-biasing constant, kn
and an integer number, s, to minimize the variance of the GLUEs
(details given in [25–27]). Probability estimators, Ei, (Eqs. (4a)
(4d)) are solely used in this method to assign a probability of fail-
ure to each equivalent strength data point whilst plotting the CDF
(Eq. (3)) and are not considered during the computation of the
Weibull parameters; a median rank estimator (Eq. (4c)) is pro-
posed in EN 12603:2002 [12].

b ¼ nkn
s

n�s

Pn
i¼sþ1ðlnriÞ �

Ps
i¼1ðlnriÞ

ð8aÞ

h ¼ exp
1
n

Xn
i¼1

ðlnriÞ þ 0:5772
1
b

 !
ð8bÞ

where kn is an un-biasing constant, values provided in Tables for
n = 2–60 [12,25] and s is the largest integer for the product of
0.84�n.

2.1.2. Computational methods
2.1.2.1. Maximum likelihood estimation (MLE). The maximum likeli-
hood estimation (MLE) is the method prescribed in ASTM C1239-13
[13] and DIN EN 843–5 [14]. This method computes a set of shape
and scale factors that maximizes the likelihood / provides the high-
est probability of producing the data obtained from the destructive
testing. The likelihood function (Eq. (9)) is defined as the product,
P, of function, f, which associates the strength data, the shape and
the scale parameters. The logarithm of the likelihood function is
maximized by differentiating lnL over each of the unknown param-
eters (b, h) and subsequently setting each of the partial derivatives
to 0 (Eq. 10a-b, likelihood equations). lnL is preferred in this step to
reduce the complexity of calculations (i.e. the logarithm of the pro-
ductP(f) is now converted in sumsRf). Analytical calculations lead
to Eqs. (11a-b) (details are not shown here for brevity but can be
found in [28]). A closed form solution of Eq. (11a-b) is not avail-
able; therefore, iterative numerical methods (e.g. gradient method)
are used to obtain estimates for b and h. A MATLAB script is used in
this study.

L ¼
Yn
i¼1

f ðri;b; hÞ ð9Þ

@
Pn

i¼1 ln L
@b

¼ 0 and;
@
Pn

i¼1 ln L
@h

¼ 0 ð10a-bÞ

n
b
� n

Pn
i¼1½rb

i � lnðriÞ�Pn
i¼1r

b
i

þ
Xn
i¼1

ri ¼ 0 ð11aÞ

h ¼
Pn

i¼1r
b
i

n

 !1=b

ð11bÞ
2.1.2.2. Method of moments estimation (MME). Moments are quanti-
tative characteristics that describe a distribution and can be taken
about the origin of the distribution (raw moments, l0, Eq. (12a)) or
the mean (central moments, l, Eq. (12b)).

l0
r ¼

Z 1

0
rr � PðrÞdr ð12aÞ
lr ¼
Z 1

0
ðr� lÞr � PðrÞdr ð12bÞ

where r is the order of the moment; P(r) is the probability density
function; r is the strength of glass and l is the mean of the
distribution.

For example, the 0th rawmoment describes the total probability
of failure ðl0

0 ¼ 1Þ and the 1st raw moment describes the mean of
the distribution ðl0

1 ¼ lÞ. Additionally, the second, third and fourth
central moments describe the variance ðl2 ¼ s2Þ; the skewness and
the kurtosis of the distribution, respectively. For the Weibull distri-
bution, the formula for the theoretical distributional moments is
given by Eq. (12c) (analytical calculations shown in [28]).

lr ¼ hr
Z 1

0
yr=b � e�ydy ð12cÞ

where y ¼ r
h

� 	b.
Moments are used in the method of moments (MME) to calcu-

late the shape and the scale factor of the Weibull distribution by
extending the known characteristics/moments of the sample to
the corresponding characteristics/moments of the population.
The number of moments that are needed is defined by the number
of unknowns; two moments are therefore, needed for the estima-
tion of the shape, b, and scale, h, factor. In particular, the known
sample moments which can be obtained from strength data (Eq.
(13)), are equated to the corresponding raw theoretical distribu-
tional moments (Eq. (14a) and (14b), [29]), as shown in Eq. (15a).
Subsequently, their members are divided by parts as shown in
Eq. (15b) wherein b is the only unknown. b can be computed by
numerical methods or tables provided in literature (e.g. in [29]).
h is then easily computed by substituting b in Eq. (14a).

Mr ¼ 1
n
�
Xn
i¼1

xri ) M1 ¼ 1
n
�
Xn
i¼1

xi and; M2 ¼ 1
n
�
Xn
i¼1

x2i ð13Þ
l0
1 ¼ l ¼ h � C 1þ 1

b

� �
ð14aÞ
l0
2 ¼ s2 þ l02

1 )

l0
2 ¼ h2 � C 1þ 2

b

� �
� C2 1þ 1

b

� �� �
þ h2 � C2 1þ 1

b

� �
)

l0
2 ¼ h2 � C 1þ 2

b

� �
ð14bÞ
l01 ¼ M1 & l0
2 ¼ M2 ð15aÞ
l02
1

l0
2
¼ M2

1

M2
)

h2 � C2 1þ 1
b

� �
h2 � C 1þ 2

b

� � ¼
1
n �
Xn

i¼1
xi

� �2
1
n �
Xn

i¼1
x2i

)

C2 1þ 1
b

� �
C 1þ 2

b

� � ¼
1
n �
Xn

i¼1
xi

� �2
1
n �
Xn

i¼1
x2i

ð15bÞ

where CðnÞ ¼ R1
0 e�x � xn�1dx.
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2.1.3. Comparison of parameter estimation methods
Previous research involving data generated numerically by

Monte Carlo simulations, show contradictory results when com-
paring different Weibull parameter estimation methods. Computa-
tional methods (MLE and MME) are identified as more accurate in
[30–32]. However, manual calculations and WLS in particular, pro-
duced the smallest standard deviation, s, for the shape parameter
and was therefore found to be more accurate than computational
methods [23]. In other studies, the accuracy of estimation methods
was found to vary with the size of the sample, n [24,33]; computa-
tional methods performed better for medium or large size samples
(n > 52) whilst manual calculations for small samples (n < 52).

More specifically, the following conclusions were reached by
previous studies:

(a) for manual methods:

– WLR outperforms LR [21,24,33].
– Faucher and Tyson’s (F&T) weight function provides the

most accurate estimates (for n � 7 [22–24]).
– No clear conclusion has been reached on the choice of

probability estimators; E1 (Eq. (4a)) is considered the
most conservative estimator and is suggested for engi-
neering purposes in [17]; E2 (Eq. (4b)) provided the least
biased estimations according to [16,32] and; E3 (Eq. (4c))
produced the smallest coefficient of variation of Weibull
parameters in [30].

– the bias of estimation is a function of sample size, n, and
linear regression method [24].
(b) for computational methods:

– Estimates from MLE are very similar to MME [33,34].
– MLE provides the lowest dispersion i.e. narrower confi-

dence intervals among LR methods [24,34].
– The probability of overestimating strength is high (P =

60%) for MLE [32].
A significant gap in the studies to-date is that the European
standard CEN12603:200 [12] on Weibull distributed glass strength
data prescribes a GLUEs method, the accuracy of which does not
appear to have been investigated or compared in any of these stud-
ies. Another limitation of the above studies is that Weibull param-
eters were estimated for ‘‘artificial” data sets that were randomly
generated with Monte Carlo simulations for a given shape and
scale factor (btrue and htrue). These data sets were then evaluated
based on their accuracy i.e. the discrepancy between the true shape
factor that was initially chosen, btrue, and the estimated shape fac-
tor obtained for a specific estimation method. This is a valid
approach for artificially generated data sets, but this evaluation
method cannot be used for real data sets since the true value of
the shape factor of the population is unknown. Therefore, based
on the knowledge that glass strength can be described with a 2-
parameter, an alternative procedure that employs a goodness-of-
fit test is used to assess the accuracy of each Weibull parameter
estimation method. Accuracy in this paper is a measure of the
goodness of fit i.e. the higher the goodness-of-fit the more effective
the method.
Fig. 2. Empirical distribution function and assumed cumulative distribution
function for glass strength data.
2.2. Goodness-of-fit methods

The methods for estimating the Weibull parameters are based
on the null hypothesis (H0) that the equivalent strength data follow
a Weibull distribution. Goodness-of-fit methods are used to evalu-
ate whether H0 needs to be rejected, which would indicate that the
Weibull distribution does not provide a good fit to the data under
consideration. A significance level, a, is therefore, chosen prior to
the statistical analysis (a = 0.05 in this study); a represents the
probability of rejecting a good fit i.e. it defines the confidence level
that the data do not follow a Weibull distribution. The observed
significance level, p, that describes the specific data set is then
compared to the chosen significance level, a. If:

� p � a: the data do not follow a Weibull distribution (H0

rejected);
� p > a: there is lack of evidence that data do not follow a Weibull
distribution and therefore, H0 cannot be rejected;

This study uses goodness-of-fit methods based on the empirical
distribution function (EDF) statistics. EDF statistics are used in var-
ious goodness-of-fit methods (Kolmogorov-Smirnov, Cramer-von
Mises, Chi-squared, Anderson Darling etc., [35]); these methods
depend on the distance, D, between the EDF (Eq. (16)) and the the-
oretical distribution function (TDF) i.e. the assumed CDF for the
estimated shape and scale factor as shown in Fig. 2. EDF statistics
are therefore, independent of the choice of probability estimator,
E (Eq. (4)). TDF should follow closely the EDF when the assumed
distribution is a good fit for the particular data set.

Fn ¼ 1
n

Xn
i

1fri 6 rg ð16Þ

where 1fri 6 rg is the indicator function that counts the number of
observations that are equal to or smaller to a fixed r which each
time represents a particular data point of the set i.e.:

1fri 6 rg ¼ 1 ri 6 r
0 ri > r




The Anderson Darling (AD) goodness-of-fit is typically used dur-
ing the assessment of glass strength data [6,7,10]. AD belongs to
the group of quadratic EDF statistics as it is a function of the
squared distance, D2, between the EDF and TDF. Additionally, this
method employs a weight function, wAD (Eq. (17a)) in order to
apply more weight to the upper and lower tail of the CDF. This is
essential for the statistical analysis of glass strength data as
strengths at low probabilities of failure (i.e. at the lower tail of
CDF) are typically used in engineering design. Therefore, the AD
goodness-of-fit will be used in this study. An approximation for-
mula commonly used for the observed significance level, pAD, of
the AD goodness-of-fit is given by Eq. (17b) [36].
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AD ¼ n
Z 1

0

½FnðrÞ � Pf ðrÞ�2
wAD

dPf ðrÞ )

AD ¼ n
Z 1

0

½FnðrÞ � Pf ðrÞ�2
Pf ðrÞ � ½1� Pf ðrÞ� dPf ðrÞ ð17aÞ

pAD ¼ 1
1þ exp �0:1þ 1:24 � lnðAD	Þ þ 4:48 � AD	ð Þ ð17bÞ

where AD	 ¼ 1þ 0:2ffiffi
n

p
� �

� AD2 and AD2 ¼ �n�Pn
i¼1

ð2i�1Þ
n � ½lnðPf ðriÞÞþ

lnð1� Pf ðrnþ1�iÞÞ�.
A unimodal Weibull distribution is typically sufficient to

describe failures in glass. However, poor goodness of fit could
potentially denote bi-modal distributions. Bi-modal distributions
can occur due to different underlying causes of failure/flaw mor-
phologies in different specimens in the same series. These data ser-
ies are more faithfully described by mixed Weibull distributions
(Eq. (19)). The estimation of the mixed Weibull parameters is
based on graphical approaches [37]. Even though computational
methods (MME and MLE) exist for such cases [38,39], there are 5
unknowns (b1, b2, h1, h2 and p) and they can therefore, be time
consuming.

Pf ðrf ;60Þ¼ p � 1�exp � rf ;60

h1

� �b1
" #( )

þ q � 1�exp � rf ;60

h2

� �b2
" #( )

ð17cÞ
where: p and q: the mixing weights for the two Weibull distribu-
tions ðpþ q ¼ 1Þ.
3. Method

3.1. Glass specimens and destructive tests

30 real data sets (n = 10–18 specimens) of glass surface strength
data, were obtained from as-received, naturally aged and artifi-
cially aged annealed glass specimens [9,11]. All specimens were
soda-lime-silica glass produced by the float process and the series
capture a wide range of as-received and aged glass (as evidenced in
the broad range of shape and scale parameters in Table A3). Some
of these series provide a close correlation to the naturally aged
glass of this study while others provide a lower or higher scatter
of strength data [11] covering a diverse range of ageing scenarios
that are used to formulate an ageing procedure for the assessment
of the strength of aged glass in [40]. The specimens are therefore,
representative of the glass used in most real world applications
in the construction industry. Therefore, the observations and con-
clusions of this study are valid for the broad range of surface dam-
age scenarios of glass.

The naturally aged glass (NA1-2) used in this study was obtained
from a façade in Norfolk, UK which had been exposed to 20 years of
natural ageing. The artificially aged glass was either sand abraded
(SA1-24) or scratched (SC1-2). Table 1 provides an overview of the
series. In total 418 specimens, grouped in 30 series each consisting
Table 1
Specimens.

Abbr. Glass type Processing Dim

NA annealed Naturally aged 150
AR annealed As-received 150
SA annealed Sand abraded 150
SC annealed Scratched 150
Total
of between 10 and 18 specimens, were tested destructively. The
destructive tests were performed in a coaxial double ring set-up
complying with ASTM C1499-3 [41] to obtain glass surface
strength data. Specimens failed across a range of loads (250–
2217 N) and durations (1–6 s). Strength data were excluded from
further consideration for specimens whose origin of failure was
located outside the boundaries of the loading ring. Variations in
sub-critical crack growth were normalised by converting strength
results into equivalent strengths for a constant load for a time per-
iod of 60 s (Eq. (1), raw data are available in Table A1, Appendix A).

3.2. Estimation methods

The following estimation methods are implemented in this
study on each set of glass strength data to determine its Weibull
parameters: (a) LR; (b) WLS using Faucher & Tyson’s (F&T) and
Bergman’s (B) weight function; (c) GLUEs and; (d) MLE. In total,
14 combinations of estimation methods, probability estimators
and weight functions are used (Table 2). The Anderson Darling
goodness-of-fit (pAD) was the main criterion for evaluating the
accuracy of each method. The relative conservativeness of
strength for each estimation method is also provided as
supplementary.

To reduce the number of possible permutations the assessment
is divided in the following two steps:

� Section 4.1: the performance (goodness-of-fit and conservative-
ness of strength estimates) of probability estimators (E1-E4) is
assessed for the LR, WLR-F&T and WLR-B estimation methods.
The GLUEs and MLE are excluded from this assessment, because
as explained in Section 2, the probability estimators do not
influence the Weibull parameters.

� Section 4.2: The best performing probability estimators from
Section 4.1 is used to assess the performance of the five differ-
ent Weibull parameter estimation methods (LR-E2, WLR-F&T-E2
and WLR-B-E2, GLUEs and MLE).

4. Results and discussion

4.1. Performance of probability estimators

Probability estimators are ranked in ascending order (1–4) in
Table 3 for methods LR, WLR-F&T and WLR-B based on their

goodness-of-fit, pAD, and strength estimates, r0.001. 1 denotes the
probability estimator with the highest goodness of fit, pAD and
the highest strength estimate of r0.001 whilst 4 denotes the proba-
bility estimator with the lowest goodness of fit, pAD and the lowest
strength estimate of r0.001. The performance of each probability
estimator is evaluated based on the number of times it scores 1st
in terms of goodness of fit or 4th in terms of design strength esti-
mates, providing the best fit to theWeibull distribution or the most
conservative design strength respectively. The rationale behind
this is that: (a) the Weibull distribution is shown to be more accu-
rate in describing glass strength data than the normal or the log-
normal distributions in Appendix B and therefore, the highest
ensions (mm) No of data sets No of specimens

� 150 � 3 2 31
� 150 � 3 1 10
� 150 � 3 25 348
� 150 � 3 2 29

30 418



Table 2
Combinations of estimation methods, estimators and weight functions.

Ref. No Method Abbr. Estimator Abbr. Weight Function

1 Least squares regression LR Mean rank (Eq. (4a)) E1 –
2 Hazen’s (Eq. (4b)) E2 –
3 Median rank (Eq. (4c)) E3 –
4 Small sample (Eq. (4d)) E4 –

5 Weighted least squares regression WLR-F&T Mean rank (Eq. (4a)) E1 Faucher and Tyson (Eq. 7b)
6 Hazen’s (Eq. (4b)) E2
7 Median rank (Eq. (4c)) E3
8 Small sample (Eq. (4d)) E4

9 Weighted least squares regression WLR-B Mean rank (Eq. (4a)) E1 Bergman (Eq. 7a)
10 Hazen’s (Eq. (4b)) E2
11 Median rank (Eq. (4c)) E3
12 Small sample (Eq. (4d)) E4

13 Good linear unbiased estimator GLUEs Hazen’s (Eq. (4b)) E2 –

14 Maximum likelihood estimation MLE Hazen’s (Eq. (4b)) E2 –

Table 3
Best performing estimator for data sets of different size.

n Series LR WLR-F&T WLR-B

pAD r0.001 pAD r0.001 pAD r0.001

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

10 AR 2 4 1 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2

11 SA8 4 2 3 1 4 1 3 2 4 1 3 2 4 1 3 2 2 4 1 3 4 1 3 2
SA25 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2

12 SA6 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 2 3 1 4 1 3 2
SA11 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 3 1 2 4 1 3 2

13 NA_b 4 2 3 1 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA9 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2

14 SA2 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA5 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA7 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA12 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA13 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA16 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 2 3 1 4 1 3 2
SA18 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA19 4 3 2 1 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA22 4 3 1 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA23 2 4 1 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA24 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 3 4 1 2 4 1 3 2
SC2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2

15 SA1 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 2 3 1 4 1 3 2
SA3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA4 3 4 1 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA10 4 2 3 1 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA14 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SA15 4 2 3 1 4 1 3 2 4 1 3 2 4 1 3 2 4 3 1 2 4 1 3 2
SA17 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 2 4 1 3 4 1 3 2
SA20 4 3 1 2 4 1 3 2 4 1 3 2 4 1 3 2 4 3 2 1 4 1 3 2
SA21 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
SC1 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2

18 NA_a 1 4 2 3 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2
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goodness of fit to the Weibull distribution denotes the most accu-
rate statistical analysis method and; (b) lower strength estimates
are always more conservative for engineering applications and
are therefore, preferred in design. True values for all methods are
available in Appendix A, Tables A2a–c.

The following can be observed for E1-E4 in terms of:

� goodness-of-fit (pAD): The ranking of probability estimators is
consistent for all data sets of WLR-F&T and is therefore, inde-
pendent of the sample sizes considered in this study. Hazen’s
estimator, E2, delivers the best goodness-of-fit for WLR-F&T, fol-
lowed by the small sample estimator E4, the median rank esti-
mator E3 and finally the mean estimator E1. The difference in
goodness-of-fit between E2 and E1 is 12.5% � DpAD,E2-E1/pAD,E2
� 51.8%. Additionally, Hazen’s estimator E2 provided the best
fit for 70% of the WLR-B data sets and for 43.3% of the LR data
sets. This low percentage of effectiveness is not essential in
the case of LR as its goodness-of-fit is largely poorer with
respect to WLR-F&T (Table 4). Therefore, LR will be omitted
for the rest of this study.



Table 4
Goodness-of-fit of max LR (LR-E1, LR-E2, LR-E3 and LR-E4) vs. WLR-F&T-E2 methods
(highest value for each series shown in bold).

n Series WLR-F&T-E2 pAD max LR pAD

10 AR 0.666 0.633

11 SA8 0.117 0.102
SA25 0.623 0.577

12 SA6 0.686 0.685
SA11 0.599 0.592

13 NA_b 0.796 0.796
SA9 0.194 0.188

14 SA2 0.359 0.360
SA5 0.172 0.118
SA7 0.784 0.776
SA12 0.189 0.127
SA13 0.507 0.500
SA16 0.569 0.198
SA18 0.800 0.800
SA19 0.672 0.668
SA22 0.482 0.482
SA23 0.575 0.535
SA24 0.151 0.130
SC2 0.238 0.244

15 SA1 0.489 0.460
SA3 0.641 0.357
SA4 0.729 0.729
SA10 0.212 0.212
SA14 0.728 0.715
SA15 0.324 0.295
SA17 0.173 0.150
SA20 0.148 0.126
SA21 0.580 0.570
SC1 0.178 0.151

18 NA_a 0.097 0.085

Table 5
Ranking of estimation methods in terms of pAD and r0.001.

n Series pAD

WLR-F&T-E2 WLR-B-E2 GLUEs

10 AR 1 2 4

11 SA8 1 4 3
SA25 1 2 4

12 SA6 1 2 4
SA11 1 4 3

13 NA_b 1 2 3
SA9 1 3 4

14 SA2 1 4 3
SA5 4 1 3
SA7 1 3 2
SA12 2 3 4
SA13 1 2 3
SA16 3 1 4
SA18 1 2 3
SA19 1 3 4
SA22 1 2 3
SA23 1 3 4
SA24 1 3 4
SC2 1 2 4

15 SA1 1 2 4
SA3 2 1 4
SA4 1 3 2
SA10 1 2 4
SA14 1 2 3
SA15 1 2 4
SA17 1 3 4
SA20 1 2 4
SA21 2 3 1
SC1 1 2 4

18 NA_a 1 3 4
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� strength estimates (r0.001): the ranking of probability estimators
is identical for all data sets and methods of Table 3 and it is
therefore, independent of the sample sizes or the estimation
methods considered in this study. Hazen’s estimator, E2, pro-
vides the highest strength estimates, followed by the small size
estimator, E4, the median rank estimator, E3, and finally the
mean estimator, E1. Therefore, the mean estimator E1 provides
the most conservative strength estimates. The difference in
strength at low probabilities of failure between E2 and E1 is
1.8% � Dr0.001,E2-E1/r0.001,E2 � 25.6%.

Conservative strength estimates are traditionally preferred for
engineering purposes. However, the most conservative strength
estimates for the data sets used in this study were produced by
the probability estimator with the poorest goodness-of-fit. There-
fore, these probability estimators are not deemed effective enough
and are therefore, not recommended. Overall, E2 is the best per-
forming estimator and will be subsequently used for the rest of this
study.

4.2. Performance of estimation methods for the Weibull parameters

Similarly to Section 4.1, the different estimation methods (WLR-
F&T, WLR-B, GLUEs and MLE) are ranked in ascending order
(Table 5) based on their Anderson Darling goodness of fit, pΑD,
and their strength estimates, r0,001. Again 1 denotes the method
with the highest goodness of fit, pAD and the highest strength esti-
mate of r0.001 and 4 the lowest goodness of fit, pAD and the lowest
strength estimate of r0.001. Similarly, the performance of each esti-
mation method is evaluated based on the number of times it scores
1st in terms of goodness of fit or 4th in terms of design strength
estimates, providing the best fit to the Weibull distribution or
r0.001

MLE WLR-F&T-E2 WLR-B-E2 GLUEs MLE

3 3 2 4 1

2 4 1 2 3
3 3 4 2 1

3 3 2 4 1
2 4 1 2 3

4 3 4 2 1
2 3 4 1 2

2 3 4 2 1
2 3 2 4 1
4 3 4 2 1
1 3 2 4 1
4 3 4 2 1
2 3 1 4 2
4 2 4 3 1
2 3 4 2 1
4 3 4 2 1
2 4 3 2 1
2 3 1 4 2
3 3 4 2 1

3 4 2 3 1
3 4 2 3 1
4 3 4 2 1
3 3 4 1 2
4 3 4 2 1
3 3 1 2 4
2 3 1 2 4
3 4 2 1 3
4 4 3 2 1
3 4 3 1 2

2 3 4 2 1
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the most conservative design strength respectively. True values are
shown in Table A3, Appendix A.

The following can be concluded on the effectiveness of the dif-
ferent estimation methods (Table 5) in terms of their:

� goodness-of-fit: WLR-F&T-E2 provides the best fit amongst the
rest of the manual and computational methods for 83.3% of
the 30 data sets. Similarly, WLR-B-E2 is the most effective
method for 10% of the data sets whilst GLUEs and MLE are most
effective only for 3.3% of the data sets each. The difference in
goodness-of-fit between WLR-F&T and GLUEs is 0.4% � DpAD,
WLPR-F&T-GLUEs/pAD,E2 � 80.3%.

� strength estimates: WLR-B-E2 provided the most conservative
estimates for strengths at low probabilities of failure, r0.001

for 46.7% of the data sets, followed by WLR-F&T-E2 for 26.7%
of the data sets, GLUEs for 20% of the data sets and finally MLE
for 6.7% of the data sets. However, WLR-B-E2 provided a lower
goodness-of-fit than WLR-F&T-E2 and therefore, is considered
inferior as its results are less reliable.

Overall, WLR-F&T-E2 was found to be the most effective method
for the small sized samples investigated in this study because it
provided the best goodness-of-fit. GLUEs proposed for the statisti-
cal analysis of glass in EN 12603 [12], was one of the least effective
estimation methods. In particular, the difference between WLR-
F&T-E2 and GLUEs can be as high as 80% for pAD (SA10, Fig. 3a, b)
Fig. 3. CDFs vs EDF (left) and; logarithmic CD
and 65% for r0.001 estimates (SC2, Fig. 3c, d) (true values shown
in Table A3, Appendix A). MLE, proposed for the statistical analysis
of glass in ASTM C1239-1 [13] and DIN843-5 [14], was found to
perform better than GLUEs for the majority of series. However,
WLR-F&T-E2 is superior to MLE. WLR-F&T-E2 improved the
goodness-of-fit up to 63% (SA10, Fig. 3a, b) and provided up to
73% more conservative strength estimates of r0.001 with respect
to MLE (SC2, Fig. 3c, d). The difference in pAD and r0.001 between
WLR-F&T-E2 and GLUEs / MLE increases as the shape factor of the
Weibull distribution decreases (Table A3, Appendix A). Low shape
factors are typical of naturally aged glass. Therefore, in this
instance the choice of estimation method becomes even more
important.

5. Conclusions

This study reviewed the statistical analysis of glass strength
data with a Weibull distribution. The following methods were con-
sidered for the estimation of the Weibull parameters: (a)
Unweighted least squares regression (LR) using 4 probability esti-
mators namely, mean rank (E1), Hazen’s (E2), median rank (E3)
and small sample (E4) estimators; (b) Weighted Least Squares
Regression (WLR) using Bergman’s (B) and Faucher and Tyson’s
(F&T) weight functions and 4 probability estimators namely, mean
rank (E1), Hazen’s (E2), median rank (E3) and small sample (E4) esti-
mators; (c) Good Linear Unbiased Estimators (GLUEs); (d) Maxi-
Fs (right) for: (a, b) SA10 and (c, d) SC2.
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mum Likelihood Estimation (MLE) and; (e) Method of Moments
Estimation (MME). A total of 14 combinations of estimation meth-
ods, probability estimators and weight functions were subse-
quently implemented for the statistical analysis of small sized
data sets of glass strength. The accuracy of these combinations
were evaluated based on their goodness-of-fit. The Anderson Dar-
ling goodness-of-fit is used in this study because is more sensitive
to the lower parts of the CDFwhich correspond to low probabilities
of failure that are typically used for engineering design and was
therefore, preferred over other goodness-of-fit tests for glass
strength.

The analysis of the 30 series of real strength data used in this
study shows that glass strength data can be successfully described
with a 2-parameter Weibull distribution. This concurs with the
established approach adopted by the glass engineering
community.

The Weighted Least Squares Regression (WLR) in conjunction
with Faucher and Tyson’s weight function (F&T) and Hazen’s prob-
ability estimator (E2) were identified as the most accurate estima-
tion method. WLR-F&T-E2 outperformed the Maximum Likelihood
Estimation (MLE) and the Good Linear Unbiased Estimators (GLUEs)
prescribed in CEN 12603 [12] and ASTM C1239-13 [13] and
DIN843-5 [14] respectively for the analysis of glass strength data.
In fact, for the glass strength data considered in this study, WLR-
F&T-E2 provided up to 80% and 63% improvement in the
goodness-of-fit with respect to the GLUEs and MLE, respectively,
Table A1
Raw strength data.

Failure Strength, rf (MPa)

n n = 10 n = 11 n = 12 n = 13 n

a/a AR SA8 SA25 SA6 SA11 NA-b SA9 S

1 93.24 44.89 14.20 39.22 39.44 29.41 43.10 4
2 94.57 48.03 16.70 41.92 41.77 33.42 43.16 4
3 99.89 49.34 16.96 43.23 42.65 41.69 43.85 4
4 103.31 49.34 17.41 45.51 43.86 43.64 44.83 4
5 105.22 50.35 18.57 47.14 44.38 47.74 45.21 4
6 108.83 50.72 18.93 48.19 44.60 48.69 45.69 4
7 112.90 50.92 19.21 48.36 44.78 50.65 45.84 4
8 115.41 50.98 19.74 48.66 45.84 56.16 46.10 4
9 121.42 51.22 19.76 49.37 45.93 62.19 48.55 4
10 129.66 52.17 19.78 49.51 46.05 62.82 48.65 4
11 55.51 20.97 50.91 46.27 62.98 48.97 4
12 53.58 48.61 66.74 49.06 4
13 75.80 51.61 4
14 4

Failure Strength, rf (MPa)

n n = 14 n = 15

a/a SA22 SA23 SA24 SC2 SA1 SA3 SA4 S

1 12.81 13.02 16.16 22.92 44.61 30.96 30.38 2
2 13.18 14.57 17.20 26.16 44.79 35.50 30.96 2
3 13.50 14.98 17.93 29.24 44.92 38.06 32.16 2
4 13.71 15.26 18.09 31.57 45.69 38.74 32.84 2
5 14.35 16.03 18.48 43.76 46.17 39.39 32.98 3
6 14.56 16.14 18.81 57.67 46.26 39.92 33.35 3
7 14.60 16.17 19.18 60.21 46.33 40.16 33.98 3
8 15.23 16.47 19.20 62.53 46.75 40.36 34.30 4
9 15.42 17.49 19.24 68.09 46.80 40.60 34.96 4
10 15.53 17.61 19.33 72.74 46.85 42.20 35.88 4
11 15.62 18.30 19.54 75.19 47.28 42.24 36.00 4
12 15.71 18.35 20.70 77.57 47.72 42.51 36.17 4
13 15.82 19.51 21.51 80.66 48.02 42.65 36.38 4
14 16.10 20.91 22.57 88.94 48.68 43.78 36.76 4
15 49.11 44.25 37.50 4
16
17
18
and up to 65% and 73% more conservative estimates of strength
with respect to GLUEs and MLE, respectively.

Therefore,WLR-F&T-E2 is recommended for small sized samples
of glass strength data because it firstly produces a better goodness-
of-fit than other manual calculations and computational methods,
and secondly it is simpler to implement.
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Appendix A

Appendix A comprises the raw glass strength data (Table A1)
and also the results from each statistical analysis method (Tables
A2a–c and A3) for all series.

The discrepancy noticed in some series between the range of
raw strength (Table A1) and the design strength (Tables A2 and
A3) is a function of the scatter/uncertainty in the raw strength data
which can be expressed in terms of the coefficient of variation, CV.
The higher the CV in the data (e.g. series NA_a), the lower the shape
factor, b of theWeibull distribution (and consequently the gradient
of the distribution) and eventually, the lower the strength at design
level.
= 14

A2 SA5 SA7 SA12 SA13 SA16 SA18 SA19

0.96 38.87 38.54 31.80 35.72 28.54 20.12 26.57
2.09 39.94 40.95 36.09 36.30 32.89 23.22 29.43
2.14 45.81 44.04 36.52 38.64 34.31 25.50 29.60
2.25 47.02 44.44 36.70 38.84 34.47 25.50 30.24
2.44 47.71 45.33 37.14 41.26 35.25 25.58 30.35
2.77 47.85 45.76 37.16 42.07 35.63 26.00 30.80
4.32 48.08 46.31 37.25 42.58 35.75 26.98 30.82
4.81 48.31 47.70 37.33 42.95 35.82 27.65 31.22
5.09 48.57 48.76 37.83 43.22 35.88 28.49 32.09
5.66 49.08 48.76 38.06 44.14 36.31 28.92 32.69
5.74 49.31 48.90 38.40 44.24 37.10 29.34 33.00
6.19 51.57 50.17 39.60 44.38 37.39 30.59 33.59
7.31 51.85 50.47 39.78 45.45 37.93 30.66 33.64
8.14 52.88 51.26 40.11 45.67 38.45 32.02 34.90

n = 18

A10 SA14 SA15 SA17 SA20 SA21 SC1 NA-a

1.66 33.22 36.54 16.65 27.84 16.29 18.61 24.12
2.14 33.32 36.62 16.76 30.00 17.95 19.77 24.13
4.85 34.08 37.66 18.05 31.40 20.80 19.91 28.52
6.88 34.87 37.85 18.07 31.79 21.52 19.98 29.18
1.05 35.21 38.08 18.25 31.96 23.92 20.69 29.67
4.49 35.62 38.11 18.30 32.03 24.73 20.74 30.48
6.06 36.20 38.58 18.38 32.25 26.80 21.81 32.98
1.21 36.87 38.59 18.45 32.28 27.00 22.73 35.91
2.06 37.10 38.76 18.64 32.70 27.60 23.83 35.92
3.15 37.46 38.84 18.70 33.99 27.92 24.25 36.38
4.03 37.47 39.13 18.94 34.29 27.95 24.59 37.60
5.68 38.22 39.20 19.03 34.78 27.95 25.20 37.70
5.71 38.97 39.24 19.17 34.95 30.25 25.23 39.71
7.54 39.41 39.29 19.53 35.18 31.06 26.88 49.10
8.51 39.48 40.61 20.53 38.48 33.31 30.75 52.43

52.46
52.61
61.72



Table A2a
Results of the LR method for different estimators.

LR

n Series Shape factor, b Scale factor, h Goodness of fit, pAD Des. Strength, r0.001 (MPa)

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

10 AR 9.2 11.0 10.1 10.4 113.9 113.4 113.6 113.5 0.623 0.532 0.633 0.610 53.6 60.6 57.5 58.6
11 SA8 18.3 22.4 20.4 21.1 51.6 51.5 51.6 51.5 0.071 0.101 0.099 0.102 35.4 37.8 36.8 37.2

SA25 9.0 10.9 10.0 10.3 19.3 19.2 19.3 19.3 0.268 0.577 0.456 0.505 8.9 10.2 9.7 9.9
12 SA6 11.5 13.8 12.7 13.1 49.1 48.9 49.0 48.9 0.456 0.685 0.622 0.653 26.9 29.6 28.4 28.9

SA11 18.4 22.1 20.3 21.0 45.7 45.6 45.6 45.6 0.372 0.592 0.530 0.561 31.4 33.4 32.5 32.8
13 NA_b 3.7 4.4 4.1 4.2 58.1 57.6 57.8 57.7 0.683 0.787 0.787 0.796 9.1 12.0 10.6 11.1

SA9 17.5 20.5 19.1 19.6 47.8 47.7 47.8 47.7 0.188 0.108 0.162 0.145 32.2 34.0 33.3 33.5
14 SA2 20.2 23.5 22.0 22.5 45.4 45.3 45.3 45.3 0.360 0.247 0.335 0.310 32.2 33.7 33.1 33.3

SA5 11.2 13.3 12.3 12.7 49.7 49.5 49.6 49.5 0.033 0.118 0.072 0.087 26.8 29.5 28.3 28.7
SA7 12.7 14.9 13.9 14.2 48.3 48.1 48.2 48.2 0.523 0.776 0.708 0.741 28.0 30.3 29.3 29.7
SA12 17.1 20.6 18.9 19.5 38.5 38.4 38.4 38.4 0.030 0.127 0.072 0.090 25.7 27.4 26.7 26.9
SA13 12.8 15.0 14.0 14.4 43.4 43.3 43.3 43.3 0.303 0.500 0.439 0.467 25.3 27.3 26.5 26.8
SA16 13.2 15.9 14.6 15.1 36.7 36.6 36.6 36.6 0.032 0.198 0.092 0.123 21.8 23.7 22.8 23.1
SA18 8.4 9.9 9.2 9.4 28.7 28.6 28.6 28.6 0.563 0.800 0.743 0.773 12.6 14.2 13.5 13.8
SA19 14.6 17.3 16.0 16.5 32.4 32.3 32.3 32.3 0.544 0.652 0.659 0.668 20.2 21.7 21.0 21.3
SA22 13.8 16.2 15.1 15.4 15.2 15.2 15.2 15.2 0.417 0.456 0.482 0.482 9.2 9.9 9.6 9.7
SA23 8.3 9.7 9.0 9.2 17.7 17.6 17.7 17.7 0.523 0.441 0.535 0.513 7.7 8.6 8.2 8.4
SA24 11.7 13.8 12.8 13.2 19.9 19.9 19.9 19.9 0.130 0.080 0.118 0.106 11.1 12.0 11.6 11.8
SC2 2.2 2.6 2.4 2.4 65.8 64.8 65.2 65.0 0.174 0.244 0.232 0.241 2.8 4.4 3.6 3.9

15 SA1 35.3 40.8 38.3 39.1 47.3 47.3 47.3 47.3 0.460 0.313 0.423 0.391 38.9 39.9 39.5 39.6
SA3 11.1 13.2 12.2 12.5 41.8 41.7 41.7 41.7 0.077 0.357 0.198 0.249 22.4 24.7 23.7 24.0
SA4 16.3 19.0 17.7 18.2 35.3 35.3 35.3 35.3 0.693 0.665 0.729 0.717 23.2 24.5 23.9 24.1
SA10 3.6 4.2 3.9 4.0 41.2 40.8 41.0 40.9 0.163 0.208 0.207 0.212 6.0 7.8 7.0 7.3
SA14 18.1 20.9 19.6 20.0 37.5 37.4 37.5 37.4 0.715 0.616 0.713 0.689 25.6 26.9 26.3 26.5
SA15 37.3 43.6 40.6 41.6 39.0 39.0 39.0 39.0 0.220 0.294 0.286 0.295 32.4 33.2 32.9 33.0
SA17 19.2 22.5 20.9 21.4 19.0 18.9 19.0 18.9 0.098 0.150 0.139 0.146 13.2 13.9 13.6 13.7
SA20 13.4 15.7 14.6 15.0 34.1 34.0 34.1 34.1 0.108 0.111 0.126 0.124 20.3 21.9 21.2 21.5
SA21 5.1 6.0 5.6 5.7 27.9 27.7 27.7 27.7 0.333 0.570 0.493 0.527 7.3 8.8 8.1 8.3
SC1 7.2 8.3 7.8 8.0 24.5 24.4 24.4 24.4 0.151 0.098 0.137 0.125 9.4 10.6 10.1 10.3

18 NA_a 3.7 4.2 4.0 4.1 42.5 42.2 42.3 42.3 0.085 0.028 0.054 0.044 6.7 8.3 7.5 7.8

Table A2b
Results of the WLR-F&T method for different estimators.

WLR-F&T

n Series Shape factor, b Scale factor, h Goodness of fit, pAD Des. Strength, r0.001 (MPa)

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

10 AR 8.2 9.4 8.8 9.0 113.7 112.9 113.2 113.1 0.505 0.666 0.623 0.644 48.8 54.0 51.8 52.6
11 SA8 17.5 20.9 19.2 19.8 51.5 51.3 51.4 51.3 0.066 0.117 0.099 0.107 34.7 36.8 35.9 36.2

SA25 9.9 11.9 11.0 11.3 19.3 19.2 19.2 19.2 0.449 0.623 0.583 0.604 9.6 10.7 10.3 10.4
12 SA6 12.0 14.0 13.1 13.4 49.0 48.8 48.9 48.9 0.534 0.686 0.654 0.672 27.5 29.8 28.8 29.2

SA11 18.9 22.3 20.8 21.3 45.6 45.5 45.6 45.5 0.437 0.599 0.563 0.583 31.7 33.4 32.7 32.9
13 NA_b 3.7 4.2 4.0 4.1 58.0 57.5 57.7 57.7 0.687 0.796 0.776 0.788 9.1 11.2 10.3 10.6

SA9 15.1 16.7 16.0 16.2 47.7 47.6 47.6 47.6 0.135 0.194 0.176 0.184 30.2 31.5 30.9 31.1
14 SA2 17.7 19.5 18.7 19.0 45.3 45.2 45.2 45.2 0.258 0.359 0.328 0.341 30.7 31.7 31.3 31.4

SA5 12.7 14.8 13.9 14.2 49.4 49.3 49.3 49.3 0.090 0.172 0.141 0.154 28.7 30.9 30.0 30.3
SA7 13.5 15.3 14.5 14.8 48.3 48.2 48.2 48.2 0.663 0.784 0.761 0.774 28.9 30.7 30.0 30.2
SA12 19.5 22.7 21.3 21.8 38.3 38.2 38.2 38.2 0.100 0.189 0.159 0.172 26.9 28.2 27.6 27.8
SA13 13.5 15.1 14.4 14.7 43.4 43.3 43.3 43.3 0.381 0.507 0.473 0.489 25.9 27.4 26.8 27.1
SA16 16.5 19.9 18.4 18.9 36.5 36.4 36.4 36.4 0.274 0.569 0.468 0.512 24.0 25.8 25.0 25.3
SA18 8.8 9.9 9.4 9.6 28.6 28.5 28.6 28.5 0.669 0.800 0.774 0.788 13.0 14.2 13.7 13.9
SA19 14.4 16.2 15.4 15.7 32.3 32.3 32.3 32.3 0.535 0.672 0.641 0.658 20.0 21.1 20.6 20.8
SA22 13.6 15.1 14.5 14.7 15.2 15.2 15.2 15.2 0.394 0.482 0.462 0.473 9.2 9.6 9.4 9.5
SA23 7.5 8.4 8.0 8.2 17.7 17.6 17.6 17.6 0.430 0.575 0.537 0.556 7.0 7.7 7.4 7.6
SA24 10.3 11.5 11.0 11.2 19.8 19.8 19.8 19.8 0.098 0.151 0.134 0.142 10.1 10.9 10.5 10.7
SC2 2.2 2.4 2.3 2.4 65.6 65.0 65.2 65.1 0.177 0.238 0.220 0.229 2.8 3.8 3.4 3.6

15 SA1 31.4 34.7 33.2 33.8 47.3 47.2 47.3 47.3 0.368 0.489 0.456 0.471 38.0 38.7 38.4 38.5
SA3 13.4 15.8 14.7 15.1 41.6 41.5 41.6 41.6 0.399 0.641 0.572 0.605 24.9 26.8 26.0 26.3
SA4 15.7 17.3 16.6 16.9 35.3 35.3 35.3 35.3 0.638 0.729 0.711 0.721 22.8 23.7 23.3 23.4
SA10 3.6 4.0 3.8 3.9 41.2 41.0 41.1 41.0 0.164 0.212 0.199 0.205 6.1 7.2 6.7 6.9
SA14 16.8 18.4 17.7 18.0 37.5 37.4 37.5 37.4 0.628 0.728 0.705 0.717 24.9 25.7 25.4 25.5
SA15 35.8 41.0 38.6 39.4 39.0 38.9 38.9 38.9 0.199 0.324 0.283 0.301 32.1 32.9 32.5 32.7
SA17 18.4 21.2 19.8 20.3 18.9 18.9 18.9 18.9 0.093 0.173 0.143 0.156 13.0 13.6 13.3 13.4
SA20 12.1 13.8 13.0 13.3 34.0 33.9 33.9 33.9 0.083 0.148 0.124 0.134 19.2 20.5 20.0 20.2
SA21 5.5 6.2 5.9 6.0 27.8 27.6 27.7 27.7 0.451 0.580 0.552 0.567 7.8 9.1 8.5 8.7
SC1 6.2 6.9 6.6 6.7 24.3 24.1 24.2 24.2 0.104 0.178 0.150 0.161 7.9 8.8 8.4 8.6

18 NA_a 3.2 3.4 3.3 3.3 42.1 41.7 41.9 41.8 0.074 0.097 0.091 0.094 4.7 5.4 5.1 5.2
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Table A2c
Results of the WLR-B method for different estimators.

WLR-B

n Series Shape factor, b Scale factor, h Goodness of fit, pAD Des. Strength, r0.001 (MPa)

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

10 AR 8.2 9.4 8.9 9.1 113.1 112.3 112.7 112.5 0.523 0.637 0.619 0.631 48.9 54.1 51.9 52.7
11 SA8 20.0 25.9 23.0 24.0 51.3 51.1 51.2 51.2 0.110 0.061 0.110 0.096 36.3 39.2 37.9 38.4

SA25 10.1 11.6 11.0 11.2 19.3 19.3 19.3 19.3 0.456 0.607 0.566 0.585 9.8 10.6 10.3 10.4
12 SA6 12.5 14.6 13.7 14.0 49.0 48.9 48.9 48.9 0.596 0.681 0.679 0.686 28.2 30.4 29.5 29.9

SA11 20.3 24.0 22.4 23.0 45.6 45.5 45.5 45.5 0.538 0.569 0.599 0.596 32.5 34.1 33.5 33.7
13 NA_b 3.7 4.0 3.9 3.9 58.2 57.8 58.0 57.9 0.654 0.779 0.745 0.760 8.9 10.4 9.8 10.0

SA9 14.4 15.5 15.1 15.3 47.6 47.5 47.6 47.6 0.100 0.143 0.128 0.134 29.5 30.5 30.1 30.2
14 SA2 16.9 18.1 17.6 17.8 45.3 45.2 45.2 45.2 0.187 0.271 0.241 0.253 30.1 30.9 30.6 30.7

SA5 13.5 15.8 14.8 15.2 49.4 49.3 49.4 49.3 0.129 0.191 0.178 0.185 29.7 31.8 31.0 31.3
SA7 13.4 14.7 14.2 14.4 48.3 48.3 48.3 48.3 0.630 0.761 0.724 0.740 28.9 30.2 29.7 29.9
SA12 20.4 23.1 22.0 22.4 38.2 38.2 38.2 38.2 0.129 0.174 0.167 0.172 27.3 28.3 27.9 28.1
SA13 13.2 14.5 14.0 14.2 43.5 43.5 43.5 43.5 0.322 0.450 0.407 0.425 25.8 27.0 26.5 26.7
SA16 18.3 21.7 20.2 20.8 36.5 36.4 36.4 36.4 0.462 0.591 0.583 0.594 25.0 26.5 25.9 26.1
SA18 8.7 9.6 9.3 9.4 28.6 28.5 28.5 28.5 0.669 0.786 0.756 0.770 13.0 13.9 13.5 13.7
SA19 14.2 15.5 15.0 15.1 32.3 32.2 32.2 32.2 0.508 0.629 0.596 0.611 19.9 20.6 20.3 20.4
SA22 12.7 13.6 13.3 13.4 15.3 15.3 15.3 15.3 0.267 0.371 0.333 0.348 8.9 9.2 9.1 9.1
SA23 7.7 8.5 8.2 8.3 17.6 17.5 17.5 17.5 0.463 0.540 0.532 0.539 7.1 7.8 7.5 7.6
SA24 10.9 12.5 11.8 12.0 19.7 19.6 19.7 19.7 0.123 0.116 0.134 0.130 10.5 11.3 11.0 11.1
SC2 2.1 2.2 2.2 2.2 67.6 67.3 67.4 67.4 0.111 0.164 0.144 0.152 2.4 3.0 2.8 2.8

15 SA1 31.9 35.1 33.7 34.3 47.2 47.2 47.2 47.2 0.387 0.452 0.446 0.452 38.0 38.8 38.5 38.6
SA3 14.2 16.2 15.4 15.7 41.7 41.6 41.6 41.6 0.508 0.651 0.620 0.636 25.7 27.1 26.6 26.8
SA4 14.9 15.8 15.5 15.6 35.4 35.3 35.4 35.4 0.517 0.652 0.607 0.625 22.2 22.9 22.6 22.7
SA10 3.4 3.6 3.5 3.6 42.0 42.0 42.0 42.0 0.098 0.141 0.125 0.131 5.4 6.2 5.9 6.0
SA14 16.3 17.5 17.0 17.2 37.5 37.4 37.5 37.4 0.561 0.691 0.650 0.668 24.5 25.2 25.0 25.1
SA15 39.2 45.3 42.6 43.6 38.9 38.9 38.9 38.9 0.296 0.301 0.330 0.325 32.6 33.4 33.1 33.2
SA17 20.8 24.7 22.9 23.6 18.9 18.8 18.8 18.8 0.164 0.124 0.168 0.156 13.5 14.2 13.9 14.0
SA20 12.9 14.5 13.8 14.1 33.9 33.7 33.8 33.8 0.113 0.136 0.137 0.139 19.8 21.0 20.5 20.7
SA21 5.6 6.2 5.9 6.1 27.9 27.8 27.8 27.8 0.469 0.577 0.553 0.565 8.1 9.2 8.7 8.9
SC1 6.3 7.0 6.7 6.8 24.1 24.0 24.0 24.0 0.120 0.166 0.154 0.160 8.1 8.9 8.6 8.7

18 NA_a 3.0 3.2 3.1 3.1 41.7 41.3 41.5 41.4 0.049 0.064 0.059 0.061 4.2 4.7 4.5 4.6

Table A3
Results of different estimation methods.

n Series Shape factor, b Scale factor, h Goodness of fit, pAD Design Strength, r0.001 (MPa)

a* b* c* d* e* a* b* c* d* e* a* b* c* d* e* a* b* c* d* e*

10 AR 9.2 9.4 9.4 9.0 10.2 0.0 112.9 112.3 115.0 113.6 0.000 0.666 0.637 0.458 0.632 0.0 54.0 54.1 53.6 57.7
11 SA8 18.3 20.9 25.9 20.6 20.7 51.6 51.3 51.1 51.7 51.5 0.071 0.117 0.061 0.077 0.109 35.4 36.8 39.2 36.9 36.9

SA25 9.0 11.9 11.6 13.1 13.1 19.3 19.2 19.3 19.1 19.2 0.268 0.623 0.607 0.529 0.563 8.9 10.7 10.6 11.3 11.3
12 SA6 11.5 14.0 14.6 13.6 14.7 49.1 48.8 48.9 49.0 48.8 0.456 0.686 0.681 0.669 0.679 26.9 29.8 30.4 29.5 30.5

SA11 18.4 22.3 24.0 22.3 22.4 45.7 45.5 45.5 45.6 45.6 0.372 0.599 0.569 0.579 0.597 31.4 33.4 34.1 33.5 33.5
13 NA_b 3.7 4.2 4.0 4.5 4.6 58.1 57.5 57.8 57.7 57.5 0.683 0.796 0.779 0.776 0.748 9.1 11.2 10.4 12.4 12.8

SA9 17.5 16.7 15.5 18.8 18.8 47.8 47.6 47.5 47.9 47.7 0.188 0.194 0.143 0.135 0.174 32.2 31.5 30.5 33.1 33.1
12 SA2 20.2 19.5 18.1 21.0 22.3 45.4 45.2 45.2 45.5 45.3 0.360 0.359 0.271 0.284 0.320 32.2 31.7 30.9 32.7 33.3

SA5 11.2 14.8 15.8 14.7 16.7 49.7 49.3 49.3 49.4 49.2 0.033 0.172 0.191 0.175 0.176 26.8 30.9 31.8 30.9 32.6
SA7 12.7 15.3 14.7 15.6 17.0 48.3 48.2 48.3 48.1 48.1 0.523 0.784 0.761 0.781 0.575 28.0 30.7 30.2 30.9 32.0
SA12 17.1 22.7 23.1 21.4 24.9 38.5 38.2 38.2 38.4 38.2 0.030 0.189 0.174 0.149 0.193 25.7 28.2 28.3 27.8 29.0
SA13 12.8 15.1 14.5 17.1 17.8 43.4 43.3 43.5 43.1 43.2 0.303 0.507 0.450 0.385 0.361 25.3 27.4 27.0 28.8 29.3
SA16 13.2 19.9 21.7 19.3 21.2 36.7 36.4 36.4 36.4 36.4 0.032 0.569 0.591 0.523 0.577 21.8 25.8 26.5 25.4 26.3
SA18 8.4 9.9 9.6 9.7 10.7 28.7 28.5 28.5 28.7 28.5 0.563 0.800 0.786 0.777 0.772 12.6 14.2 13.9 14.1 14.9
SA19 14.6 16.2 15.5 16.2 17.5 32.4 32.3 32.2 32.4 32.3 0.544 0.672 0.629 0.616 0.646 20.2 21.1 20.6 21.2 21.7
SA22 13.8 15.1 13.6 17.6 18.0 15.2 15.2 15.3 15.2 15.2 0.417 0.482 0.371 0.309 0.278 9.2 9.6 9.2 10.2 10.4
SA23 8.3 8.4 8.5 8.5 8.8 17.7 17.6 17.5 17.8 17.7 0.523 0.575 0.540 0.425 0.548 7.7 7.7 7.8 7.9 8.1
SA24 11.7 11.5 12.5 11.1 12.0 19.9 19.8 19.6 20.1 19.9 0.130 0.151 0.116 0.062 0.138 11.1 10.9 11.3 10.8 11.2
SC2 2.2 2.4 2.2 3.0 3.0 65.8 65.0 67.3 63.2 64.0 0.174 0.238 0.164 0.098 0.111 2.8 3.8 3.0 6.3 6.6

15 SA1 35.3 34.7 35.1 34.1 37.3 47.3 47.2 47.2 47.4 47.3 0.460 0.489 0.452 0.290 0.450 38.9 38.7 38.8 38.7 39.3
SA3 11.1 15.8 16.2 16.2 17.0 41.8 41.5 41.6 41.4 41.4 0.077 0.641 0.651 0.583 0.609 22.4 26.8 27.1 27.0 27.6
SA4 16.3 17.3 15.8 18.9 19.6 35.3 35.3 35.3 35.3 35.3 0.693 0.729 0.652 0.674 0.600 23.2 23.7 22.9 24.5 24.8
SA10 3.6 4.0 3.6 5.0 5.0 41.2 41.0 42.0 40.1 40.5 0.163 0.212 0.141 0.042 0.076 6.0 7.2 6.2 10.1 10.1
SA14 18.1 18.4 17.5 18.7 20.9 37.5 37.4 37.4 37.6 37.4 0.715 0.728 0.691 0.661 0.620 25.6 25.7 25.2 26.0 26.9
SA15 37.3 41.0 45.3 43.8 40.6 39.0 38.9 38.9 39.0 39.0 0.220 0.324 0.301 0.274 0.297 32.4 32.9 33.4 33.3 32.9
SA17 19.2 21.2 24.7 21.2 20.5 19.0 18.9 18.8 19.0 18.9 0.098 0.173 0.124 0.112 0.145 13.2 13.6 14.2 13.7 13.5
SA20 13.4 13.8 14.5 14.5 13.7 34.1 33.9 33.7 34.2 34.1 0.108 0.148 0.136 0.093 0.127 20.3 20.5 21.0 21.2 20.5
SA21 5.1 6.2 6.2 6.3 6.7 27.9 27.6 27.8 27.6 27.6 0.333 0.580 0.577 0.583 0.535 7.3 9.1 9.2 9.2 9.9
SC1 7.2 6.9 7.0 7.4 7.1 24.5 24.1 24.0 24.6 24.4 0.151 0.178 0.166 0.096 0.163 9.4 8.8 8.9 9.7 9.3

18 NA_a 3.7 3.4 3.2 3.7 3.9 42.5 41.7 41.3 43.3 42.4 0.085 0.097 0.064 0.057 0.072 6.7 5.4 4.7 6.5 7.1

* a = LR-E1, b = WLR-F&T-E2, c = WLR-B-E2, d = GLUES & e = MLE.
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Appendix B

In this Appendix, the glass strength data used in the present
study are fitted to a normal and lognormal distribution using the
Maximum Likelihood estimation method and compared to the
one obtained from the Weibull distribution. The aim is to verify
that the data from physical tests used in the present study conform
to the findings of previous studies [2,3] i.e. that a 2-parameter Wei-
bull distribution is more accurate in describing glass strength data
Fig. B1. Goodness of fit for all data series fitted to a

Fig. B2. Design strength for all data series fitted to a
than a normal distribution and is always more conservative in the
tail of the distribution than a lognormal distribution (provided in
Section 1).

Fig. B1 shows that the Weibull distribution provides a good fit
i.e. the observed significance level is larger than the selected signif-
icance level (pAD � a=0.05) for all of the data series. However, the
normal and the lognormal distribution fail to provide a good fit
(pAD < a=0.05) for 7% and 20% of the data series, respectively.
Therefore, the Weibull distribution is more accurate in describing
Weibull, a normal and a lognormal distribution.

Weibull, a normal and a lognormal distribution.
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glass strength data than a normal and a lognormal distribution.
Additionally, it is found that the Weibull distribution provides
the highest goodness-of-fit for 57% of the data series, followed by
the lognormal distribution for 27% of the data series and subse-
quently by the normal distribution for 16% of the data series.

The Weibull distribution also provides the most conservative
design strength values at a probability of failure of Pf=0.001 for
90% of the data series whilst the normal distribution provides the
most conservative strength estimates for the remaining 10%
(Fig. B2). In total, the strength estimated with the Weibull distribu-
tion is always more conservative than that estimated with the
lognormal.

Therefore, this confirms that the conclusions of studies [2,3]
that ‘‘a 2 parameter Weibull distribution is more accurate in
describing glass strength data than a normal distribution and is
always more conservative in the tail of the distribution than a log-
normal distribution” are valid for the strength data used in the pre-
sent study.
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