115 research outputs found

    Analyses of collective flow and space-time evolution based on relativistic hydrodynamical model

    Get PDF
    We numerically solve fully (3+1)-dimensional relativistic hydrodynamical equation with the baryon number conservation law. For realistic initial conditions we adopt the results from the event generator (URASiMA). Using this model we discuss collective flow.Comment: 4 pages, 11 figures, to apper in Proceedings of Quark Matter '9

    Comments on differential cross section of phi-meson photoproduction at threshold

    Get PDF
    We show that the differential cross section d_sigma/d_t of gamma p --> \phi p reaction at the threshold is finite and its value is crucial to the mechanism of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure

    A Calculation of Baryon Diffusion Constant in Hot and Dense Hadronic Matter Based on an Event Generator URASiMA

    Get PDF
    We evaluate thermodynamical quantities and transport coefficients of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter.Comment: 15 pages, 5 figures, LaTeX2

    Coherent photonuclear reactions for isotope transmutation

    Full text link
    Coherent photonuclear isotope transmutation (CPIT) produces exclusively radioactive isotopes (RIs) by coherent photonuclear reactions via E1 giant resonances. Photons to be used are medium energy photons produced by laser photons backscattered off GeV electrons. The cross sections are as large as 0.2 - 0.6 b, being independent of individual nuclides. A large fraction of photons is effectively used for the photonuclear reactions, while the scattered GeV electrons remain in the storage ring to be re-used. CPIT with medium energy photons provides specific/desired RIs with the high rate and the high density for nuclear science, molecular biology and for nuclear medicines.Comment: 8 pages, 2 figure

    Measurement of 1.7 to 74 MeV polarised gamma rays with the HARPO TPC

    Full text link
    Current {\gamma}-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D program to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for {\gamma} rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised {\gamma}-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronics setup is described, with an emphasis on the trigger system. The event reconstruction algorithm is quickly described, and preliminary measurements of the polarisation of 11 MeVphotons are shown.Comment: Proceedings VCI201

    Photoproduction of Lambda(1405) and Sigma^{0}(1385) on the proton at E_\gamma = 1.5-2.4 GeV

    Full text link
    Differential cross sections for γpK+Λ(1405)\gamma p \to K^+\Lambda(1405) and γpK+Σ0(1385)\gamma p \to K^+\Sigma^0(1385) reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of 0.8<cos(Θ)<1.00.8<\cos(\Theta)<1.0 for the K+K^+ scattering angle in the center-of-mass system. This data is the first measurement of the Λ(1405)\Lambda(1405) photoproduction cross section. The lineshapes of \LamS measured in Σ+π\Sigma^+\pi^- and Σπ+\Sigma^-\pi^+ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the Σπ\Sigma\pi scattering amplitudes. The ratios of \LamS production to \SigS production were measured in two photon energy ranges: near the production threshold (1.5<Eγ<2.01.5<E_\gamma<2.0 GeV) and far from it (2.0<Eγ<2.42.0 <E_\gamma<2.4 GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances
    corecore