44 research outputs found

    Gaussian process methodology for multi-frequency marine controlled-source electromagnetic profile estimation in isotropic medium

    Get PDF
    The marine controlled-source electromagnetic (CSEM) technique is an application of electromagnetic (EM) waves to image the electrical resistivity of the subsurface underneath the seabed. The modeling of marine CSEM is a crucial and time-consuming task due to the complexity of its mathematical equations. Hence, high computational cost is incurred to solve the linear systems, especially for high-dimensional models. Addressing these problems, we propose Gaussian process (GP) calibrated with computer experiment outputs to estimate multi-frequency marine CSEM profiles at various hydrocarbon depths. This methodology utilizes prior information to provide beneficial EM profiles with uncertainty quantification in terms of variance (95% confidence interval). In this paper, prior marine CSEM information was generated through Computer Simulation Technology (CST) software at various observed hydrocarbon depths (250–2750 m with an increment of 250 m each) and different transmission frequencies (0.125, 0.25, and 0.5 Hz). A two-dimensional (2D) forward GP model was developed for every frequency by utilizing the marine CSEM information. From the results, the uncertainty measurement showed that the estimates were close to the mean. For model validation, the calculated root mean square error (RMSE) and coefficient of variation (CV) proved in good agreement between the computer output and the estimated EM profile at unobserved hydrocarbon depths

    The arithmetic mean iterative method for solving 2D Helmholtz equation

    Get PDF
    In this paper, application of the Arithmetic Mean (AM) iterative method is extended by solving second order finite difference algebraic equations. The performance of AM method in solving second order finite difference algebraic equations is comparatively studied by their application on two-dimensional Helmholtz equation. Numerical results of AM method in solving two test problems are included and compared with the standard Gauss-Seidel (GS) method. Based on the numerical results obtained, the results show that AM method is better than GS method in the sense of number of iterations and CPU time

    Numerical solutions of linear Fredholm Integral Equations using half-sweep arithmetic mean method

    Get PDF
    In this paper, performance of the 2-Point Half-Sweep Explicit Group (2-HSEG) iterative method with first order composite closed Newton-Cotes quadrature scheme for solving second kind linear Fredholm integral equations is investigated. The formulation and implementation of the method are described. Furthermore, numerical results of test problems are also presented to verify the performance of the method compared to 2-Point Full-Sweep Explicit Group (2-FSEG) method. From the numerical results obtained, it is noticeable that the 2-HSEG method is superior to 2-FSEG method, especially in terms of computational time

    Tracking the early depleting transmission dynamics of COVID-19 with a time-varying SIR model

    Get PDF
    The susceptible-infectious-removed (SIR) model offers the simplest framework to study transmission dynamics of COVID-19, however, it does not factor in its early depleting trend observed during a lockdown. We modified the SIR model to specifically simulate the early depleting transmission dynamics of COVID-19 to better predict its temporal trend in Malaysia. The classical SIR model was fitted to observed total (I total), active (I) and removed (R) cases of COVID-19 before lockdown to estimate the basic reproduction number. Next, the model was modified with a partial time-varying force of infection, given by a proportionally depleting transmission coefficient, βt and a fractional term, z. The modified SIR model was then fitted to observed data over 6 weeks during the lockdown. Model fitting and projection were validated using the mean absolute percent error (MAPE). The transmission dynamics of COVID-19 was interrupted immediately by the lockdown. The modified SIR model projected the depleting temporal trends with lowest MAPE for I total, followed by I, I daily and R. During lockdown, the dynamics of COVID-19 depleted at a rate of 4.7% each day with a decreased capacity of 40%. For 7-day and 14-day projections, the modified SIR model accurately predicted I total, I and R. The depleting transmission dynamics for COVID-19 during lockdown can be accurately captured by time-varying SIR model. Projection generated based on observed data is useful for future planning and control of COVID-19
    corecore