
processes

Article

Model Calibration of Stochastic Process and
Computer Experiment for MVO Analysis of
Multi-Low-Frequency Electromagnetic Data

Muhammad Naeim Mohd Aris 1,*, Hanita Daud 1, Khairul Arifin Mohd Noh 2 and
Sarat Chandra Dass 3

1 Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610,
Perak, Malaysia; hanita_daud@utp.edu.my

2 Department of Geosciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
khairula.nmoh@utp.edu.my

3 School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, Putrajaya 62200, Malaysia;
s.dass@hw.ac.uk

* Correspondence: muhammad_16000991@utp.edu.my

Received: 7 March 2020; Accepted: 15 April 2020; Published: 19 May 2020
����������
�������

Abstract: An electromagnetic (EM) technique is employed in seabed logging (SBL) to detect
offshore hydrocarbon-saturated reservoirs. In risk analysis for hydrocarbon exploration, computer
simulation for subsurface modelling is a crucial task. It can be expensive and time-consuming
due to its complicated mathematical equations, and only a few realizations of input-output pairs
can be generated after a very lengthy computational time. Understanding the unknown functions
without any uncertainty measurement could be very challenging as well. We proposed model
calibration between a stochastic process and computer experiment for magnitude versus offset (MVO)
analysis. Two-dimensional (2D) Gaussian process (GP) models were developed for low-frequencies
of 0.0625–0.5 Hz at different hydrocarbon depths to estimate EM responses at untried observations
with less time consumption. The calculated error measurements revealed that the estimates were
well-matched with the computer simulation technology (CST) outputs. Then, GP was fitted in the
MVO plots to provide uncertainty quantification. Based on the confidence intervals, hydrocarbons
were difficult to determine especially when their depth was 3000 m from the seabed. The normalized
magnitudes for other frequencies also agreed with the resulting predictive variance. Thus, the model
resolution for EM data decreases as the hydrocarbon depth increases even though multi-low
frequencies were exercised in the SBL application.

Keywords: MVO analysis; stochastic process; computer experiment; Gaussian process; EM data; CST
software; computer simulation

1. Introduction

The electromagnetic (EM) imaging technique for geophysical applications is categorized as a
geo-electrical method family which can be grouped into two types, active and passive [1]. The marine
controlled-source electromagnetic (CSEM) surveying technique is classified as an active method due to
the character of its EM source. In offshore hydrocarbon exploration, marine CSEM is also known as
seabed logging (SBL). SBL is an application of the EM technique for marine hydrocarbon prospecting
in the deep offshore environment. This application has become a promising tool to detect, characterize,
and map offshore hydrocarbon-filled reservoirs. Since the early 2000s, it has gained wide acceptance in
the oil and gas industry. Due to rapid development of the EM technique, it is now a well-established
surveying technique for offshore hydrocarbon exploration based on the technology of horizontal source
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and receiver sensors (see [2–4] for references). Generally, this application detects the contrasts of the
electrical resistivity, exploiting the fact that a hydrocarbon-filled reservoir has a higher resistivity than
its surroundings. The traditional surveying technique (i.e., seismic surveying) uses acoustic waves to
acquire structural information about the lithology of the subsurface beneath the seabed, while SBL
applications can provide information of pre-drilling discrimination whether the potential reservoir
(i.e., prospect) contains hydrocarbon or not.

SBL application utilizes a powerful electric dipole to continuously transmit a periodic
low-frequency EM signal through seawater and the subsurface in all directions. The frequency
exercised in the SBL application is usually between 0.01 Hz and 10 Hz. Typically, the electric dipole
transmitter is towed at an elevation of 30–50 m above the seabed surface. Due to the behavior of the
EM waves, the geometry characteristics of the highly-resistive layer (e.g., hydrocarbon) under the
seabed can be identified. The electric and magnetic receivers are positioned on the seabed to record
the transmitted EM signal. These receivers can record different types of waves, such as direct waves,
air waves, and the reflected and refracted wave, from the subsurface interaction. Detection of the
reflected and refracted waves from the highly-resistive body beneath the seabed is the basis and main
contribution to the SBL data interpretation. According to [2], this wave is known as a guided wave.
When this wave enters a hydrocarbon-saturated reservoir, it flows along the resistive layer before
reaching the seabed receivers. Thus, the receivers contain information of the geological structure
underneath the seabed.

In the application of geophysics, numerical modelling is the most crucial part, especially when
it comes to the context of subsurface/reservoir modelling. The finite element (FE) method is one
of the most famous techniques exercised in EM problems due to its capability of modelling such a
complex geological structure in the deep offshore environment. This computational method exercises
unstructured grids so that it can realistically replicate the complex structure [5]. The robustness of the
FE method is undoubted; however, this technique requires very high computational time to obtain
linear solutions. Researchers in [6,7] mentioned that the most time-consuming part in the FE algorithms
is solving the linear equations system, not to mention for inversion scheme since it needs multiple
EM forward solutions [7]. Computer simulations from complex computer models usually are either
very costly or time-consuming or both. Consequently, only very few realizations of input and output
combinations of the computer simulation outputs are available after a very lengthy computational
time. Furthermore, reservoir models are constructed based on a very large amount of noisy data
through computer simulations. Understanding the unknown functions from multiple possible outputs
of reservoir models is the other crucial part, especially to quantify the uncertainties of the data. When
the depth of the resistive body gets deeper, the EM response become very difficult to distinguish
with a reference response (a response from a non-hydrocarbon region). Due to these constraints,
many researchers have looked forward to reducing the computational time in the data interpretation.
Researchers in [5] mentioned that if there is a possibility to de-risk a known prospect, any additional
information that is able to be collected will be beneficial to the exploration.

Thus, in order to seek the most favorable balance between modelling accuracy associated with
uncertainty quantification in the forward modelling and computational cost involved in the computer
simulations, we propose a methodology of model calibration between a well-known stochastic process,
namely Gaussian process (GP) regression, and computer experiments using computer simulation
technology (CST) software in the magnitude versus offset (MVO) analysis. Note that the SBL data
interpretation approach is commonly based on analyzing the normalized magnitude versus offset
(MVO) plot [8]. This is based on the assumption that if the reference EM magnitude can be obtained
from a region where the absence of the hydrocarbon-filled reservoir has been confirmed, the normalized
MVO could determine the presence of the resistive body. This happens because the attenuation of the
electric field (E-field) when the hydrocarbon reservoir is present is lower with distance compared to
the E-field attenuation at the reference region. In the literature, the GP methodology was successfully
employed to estimate the EM responses in the EM forward modelling (refer to [9,10] for details),
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however, applying model calibration of the probabilistic technique and the simulation modelling from
the computer experiment on MVO analysis of multi-low-frequency EM data is a novel methodology in
the EM application.

Basically, this paper preferentially highlights the MVO analysis of one-dimensional (1D) SBL
data in the risk analysis by calibrating models developed by the stochastic process and the CST
outputs. Although the current numerical techniques are very powerful and capable of providing good
representation of the marine CSEM models, this attempt is very helpful in certain ways especially
when the data are insufficient. Rather than acquiring the SBL data using computer simulation software
for all possible parameters (e.g., offset, depth, frequency etc.) which consequently requires high
computational time due to the complexity of its deterministic models, stochastic process of multivariate
GP regression methodology is more efficient where it is capable of providing reliable information of
the EM responses with uncertainty quantification and has low time consumption. Hence, it could
reduce the data-processing time of acquiring EM responses in the SBL simulation. The main idea of
this research work is that two-dimensional (2D) GP regression is used to estimate and model the EM
profile at untried low transmission frequencies (0.0625–0.5 Hz) by utilizing the tried CST computer
outputs as the prior information. Then, the GP is fitted in the MVO plots to quantify the uncertainty of
the presence of the hydrocarbon in terms of variance in order to understand the behavior of the EM
responses towards multi-low-frequency EM signals (especially at a hydrocarbon depth of 3000 m) in
hydrocarbon detection. Hence, the most suitable transmission frequency that can give the best model
resolution for hydrocarbon detection in various depths could be pre-identified before exploration is
done. This could be implemented in scanning or risk analysis involved in the SBL application to explore
the prospects. The section below briefly discusses the literature on the GP and the CST software.

2. Model Calibration

Computer experiments are not new among scientists, engineers, and researchers around the
world. For decades, computer experiments have successfully been used in the application of science,
technology, and engineering. Nowadays, scientists prefer to utilize computer simulations that involve
mathematical models rather than doing case study observations or conducting physical experiments.
The main reason for using computer simulations is that they can be implemented in any circumstances,
including experiments that are impossible to be done physically in a real situation. Many factors can
be considered as major contributions to the increase of usage of the computer simulations, such as
long-term cost effect, safety issues, low time taken for the data acquisition, etc. As early as the
1980s, computer codes that represented a model of fluid-dynamics for flames had been described
by researchers in [11]. They mentioned that the computer code was able to solve a complex set of
partial differential equations (PDEs) where the input variables consisted of parameters for five different
chemical reactions corresponding to the velocity of the flames. For additional literature, [12] described
several other research works in different applications that utilized computer experiments to simulate
physical experiments/phenomena for designing and predictive purposes.

Computer experiments are run by means of computer code and highly-developed theories of
mathematics, physics, and engineering. Researchers in [12] and subsequent works modeled the
computer output, Y(x), which depended on the input parameter, x, as the sum of regression terms, βi,
and stochastic component, S(x). The regression part depends on the known functions, fi(x), where
i = 1, 2, . . . , k. Thus, the computer output model is defined by Equation (1):

Y(x) =
k∑

i=1

βi fi(x) + S(x), (1)

where S(x) represents a random stochastic process with zero mean and covariance,

J(x, x′) = σ2C(x, x′). (2)
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From Equation (2), C(x, x′) is the correlation function between S(x) and S(x′). The idea behind this
concept is although Y(x) is a deterministic function, the complex departures of Y(x) from the regression
part may bear a resemblance to the realization of an appropriately-chosen stochastic process, S(x).
There are a lot of choices of stochastic process, but the Gaussian process (GP) is the most famous choice
of S(x) as the distribution of each S(x) is treated and assumed as a Gaussian (normal) distribution
with a mean function and a covariance function. Researchers in [13] mentioned that GP can become
a surrogate model for any intricate mathematical models that require lengthy computational time
to solve. The features of being flexible to represent the computer output, Y(x), and easy to obtain
analytical formulas make the GP methodology a very popular stochastic process.

Based on the literature, there are many studies related to different aspects of computer experiments
and statistical methodology. Researchers in [12] discussed the prediction of untried points based on
kriging equations defined from the GP methodology. Researchers in [14] also thoroughly discussed
predictive and issues obtained in designing equations involved in the computer experiments for
choosing correlation function. More recent studies on computer models have focused on the model
calibration, measurement of uncertainty, and model validation for multivariate and functional outputs.
Model calibration is a process of choosing appropriate model parameters of computer code, so that the
real-field data can be well-approximated by the computer model. The main key to this process is the
consideration of selecting a good correlation function that can measure the discrepancy between the
computer response and the real-field data and accurately mimic actual values (examples can be found
in [15]). Researchers in [16] also described model calibration for high-dimensional multivariate output.
Next is model validation: Model validation is a process of assessing whether data obtained from the
computer model approximate the real-field data with an acceptable accuracy or not. As the examples
from [17–19] explained validation of computer models from a frequentist viewpoint, [20] discussed the
methodology of Bayesian model validation for computer outputs. The details on the GP and the CST
software are discussed in Sections 2.1 and 2.2

2.1. Gaussian Process (GP)

GP is a well-known technique that has been applied in many applications. This technique has been
adopted in scientific and engineering fields, comprising of machine learning, geo-statistics, electronics,
etc. This stochastic technique became very popular due to its capability of being flexible, probabilistic
and non-parametric. GP has convenient properties for modelling in statistics applications and machine
learning. According to [21], GP regression has demonstrated outstanding performance in plenty of
studies. It is a simple and elegant approach where it works well in modelling non-linear problems for
probabilistic networks [22]. Since GP is a probabilistic kernel machine, it can provide predictive mean
and variance through Bayesian inference. Researchers in [23] mentioned that GP has no restriction on
the composition of the mean function and the covariance function. The generic framework provided
by the GP can be exercised in many problems/applications especially in regression, interpolation, and
prediction where a deterministic function is not able to be obtained [24].

Here, we provide the literature of GP in applications other than computer experiments. Researchers
in [25] investigated the ability of the GP regression to predict load-bearing piles capacity by comparing
performances of the GP, the support vector machine (SVM) approach, and empirical relations.
They found that GP regression worked very well in predicting the piles capacity as compared to the
SVM and empirical relations. Researchers in [26] asserted that low cost and low complex proximity
reports for received-signal-strength (RSS) threshold were obtained when using GP. In the electronic
field, [27] utilized GP to describe the uncertainty of estimation in the state of health (SOH) of lithium-ion
batteries. Next, researchers in [28] stated that GP was able to reduce the complexity in the computer
vision with a better quality of reconstruction. Additionally, this probabilistic approach has also been
used in chemical applications. For example, [29] used GP regression to predict particle diameters of
nickel pellets. The findings revealed that analysis using GP and a counting rule was capable of yielding
good performance with a small mean absolute percentage error (MAPE). For geophysics problems,
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researchers in [30] claimed that GP regression was an efficient approach to obtain reliable information
of porosity and permeability in well analysis.

2.2. Computer Simulation Technology (CST) Software

CST EM STUDIO (CST EMS) is a commercial EM software/tool (CST Studio Suite Research Base
Pack (CST 2019), Dassault Systèmes, Vélizy-Villacoublay, France) that provides powerful computational
solutions to simulate and design low-frequency applications. As described in [31], this low-frequency
solver is capable of discretizing Maxwell’s equations using the finite integration method (FIM). In EM
problems, Maxwell’s equations are utilized to predict the propagation phenomenon of low-frequency
EM signal (i.e., strength of E-field) travelling through different mediums in order to probe contrast
of resistivity. The FIM solves the equations in a finite calculation domain which is in grid cell of
hexahedral or tetrahedral mesh element. Maxwell’s equations involved in the software are defined by
Equations (3)–(6): ∫

∂A

→

E .
→

ds = −
∂
∂t

∫ ∫
A

→

B .
→

dA, (3)

∫
∂A

→

H.
→

d s =
∫ ∫

A

∂
→

D
∂t

+
→

j

.→dA, (4)

∫ ∫
∂V

→

B .
→

dA = 0, (5)

x

∂V

→

D.
→

dA = Q. (6)

CST software has been used in many applications especially in EM problems due to its
user-friendliness and flexibility. Researchers in [32] stated that CST software can be used to replicate
SBL applications to acquire synthetic SBL data/responses. Researchers in [33] also suggested CST
software as the synthetic SBL data acquisition tool. Studies related to the usage of the CST software in
EM applications can be found in [34–39]. Details of the CST software can be found in [40].

3. Methodology

This section consists of three subsections, which include the SBL modelling using CST software,
developing the forward GP models for every low transmission frequency and hydrocarbon depth,
and model validation between computer simulation outputs and the estimates by using different
statistical forecast error measurements.

3.1. Seabed Logging (SBL) Modelling

In this research work, typical synthetic SBL models for hydrocarbon exploration were replicated
using CST software. SBL models with the presence of hydrocarbon are called target models, while the
SBL model with no hydrocarbon layer is called a reference model. As mentioned earlier, we focused
on the application of multi-low-frequency EM signals (from 0.0625 to 0.5 Hz with an increment of
0.0625 Hz each) to study the effect of these frequencies towards the magnitude versus offset (MVO)
plots at far source-receiver separation distances. For the target model, a 200 m-thick resistive body
(hydrocarbon layer) was located at certain depths underneath the seabed. We considered three different
depths of hydrocarbon, which were 1000 m, 2000 m, and 3000 m from the seabed surface (seafloor)
while, for the reference model, no hydrocarbon layer was embedded in the sediment layer. Note that the
depth of the hydrocarbon layer and the transmission frequency were the computer model parameters.
For every different set of these two parameters, a dataset of 1D SBL or EM responses was generated
through the simulation software. Figure 1 shows the basic illustration of the SBL models at the xz
cross-section used in this research work.
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CST software modeled and simulated the SBL with defined parameters. The length, width,
and height of the developed SBL models (target and reference models) were 20,000 m, 20,000 m,
and 5000 m, respectively. Target models consisted of four layers, and every layer has its own unique
thickness (air = 300 m; seawater = 1000 m; hydrocarbon = 200 m; sediment = 3500 m). The hydrocarbon
layer was embedded in the sediment layer. The overburden layer is the sediment above the hydrocarbon
layer. The thickness of the overburden layer represents the depth of the hydrocarbon medium. While
for the reference model, thicknesses of air and seawater layers remained so parameterized in the target
model, the sediment layer was fixed to have a thickness of 3700 m. We considered both the hydrocarbon
and sediment layers as isotropic media. Each of the layers were parameterized with reliable electrical
conductivity (reciprocal of electrical resistivity). We tabulated the properties in Table 1.

Figure 1. Stratified illustration of the SBL models. There are two types of SBL models: (a) SBL model
with the presence of hydrocarbon layer; (b) SBL model without the hydrocarbon layer. For the target
model, depth of the hydrocarbon (thickness of overburden) was varied, which were 1000 m, 2000 m,
and 3000 m. The height and length of both the SBL models were 5000 m and 20,000 m, respectively.

Table 1. Electrical conductivity values used in the SBL modelling were taken from [36]. Note that
electrical resistivity is the inverse of electrical conductivity.

Layer Electrical Conductivity (S/m)

Air 1.00 × 10−11

Seawater 1.63
Sediment (overburden & under burden) 1.00

Hydrocarbon (HC) 2.00 × 10−3

A 270 m-long horizontal electrical dipole (HED) transmitter was used as the source of the EM
signal. This transmitter was positioned in the seawater at the center of the SBL model (x = 10,000 m;
y = 10,000 m) in the orientation of x-direction and at an elevation of 30 m above the seabed surface.
The HED source was kept stationary (static source-receiver separation) and the current strength used
in this research work was 1250 A. Inline receivers were located along the x-direction (0–20,000 m) at
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y = 10,000 m on the seabed. Then, data acquired from the CST software were processed using a GP
regression methodology. The details were described in the subsection below.

3.2. Stochastic Process–GP Regression

Theoretically, GP is a random function f at which any finite number of the function is normally
distributed (Gaussian distribution). This stochastic process is fully defined by a mean function, m(x),
and a covariance function, k(x, x′) which are evaluated in terms of vector and matrix, respectively.
By simplicity, the GP regression usually employs zero-mean function. Assuming the training set
(from the CST computer output), y, of n number of parameters which represented the magnitude
of E-field (EM response) having input parameter, x, where x = (p, q) for the two-dimensional (2D)
model and x = p for the one-dimensional (1D) regression model. In this paper, p denotes the
source-receiver separation distance (offset) and q denotes the transmission frequency at every tested
depth of hydrocarbon. Thus, the input, x ∈ Rn=2 (for 2D) and x ∈ Rn=1 (for 1D), and the corresponding
output, y ∈ R. The GP model on f with a zero-mean function, m(x) = 0, was therefore defined in
Equation (7):

f (x) ∼ GP(0, k(x, x′)), (7)

where GP was the Gaussian process and k(x, x′) was the covariance function. Generally, m(x) indicates
an expectation value of the function f , while k(x, x′) measures the correlation between input data.

We used a very famous covariance function, namely, squared exponential (SE), to govern the
smoothness of the GP realizations which was dictated by the CST computer output. For the SE
covariance function, as the distance between the input pairs of the offset and frequency of the EM wave
increases, the covariance between these input pairs is exponentially decreased. The SE covariance
function is represented by Equation (8):

k(x, x′) = σ2
f exp

−1
2

(
|x− x′|
`

)2, (8)

where σ f and ` were hyper-parameters which represented the signal variance and characteristic-length
scale, respectively. These hyper-parameters were properly optimized by utilizing negative marginal
likelihood to reproduce the best correlation between training (observed) and testing (unobserved)
observations. For the optimization, the hyper-parameters were defined as θ =

{
σ f , `

}
and the prior

knowledge of these hyper-parameters was differently predetermined for every depth of hydrocarbon.
The priors were θ1000 = {5, 25}, θ2000 = {0.5, 10}, and θ3000 = {0.5, 5.2} for hydrocarbon depths of
1000 m, 2000 m, and 3000 m, respectively. Thus, the negative log-likelihood is defined by Equation (9):

log p(y
∣∣∣x,θ) = −

(
log|K|+ yTK−1y + nlog(2π)

)
2

, (9)

where K was a covariance matrix calculated using Equation (8), which consisted of the correlation
of the training set, and log p(y

∣∣∣x,θ) was distributed by GP(0, g ). To estimate the expected value
(i.e., estimate of the magnitude of E-field), m∗, the prior distribution for all possible random variables
was defined as below: (

m
m∗

)
∼ GP

(
0,

[
Kε K∗
KT
∗ K∗∗

])
, (10)

where Kε = K + ε, ε represented the additive noise for modelling tolerance which was 0.05%, K∗ was
the column vector which measured the correlation between testing, x∗, and training set, and K∗∗ was
the matrix which defined the correlation of the data in the testing set. These matrices were calculated
using Equation (8). Here, for every depth of hydrocarbon, we have information of the training input
pair (i.e., offset and frequency of the EM wave), x, the corresponding output (i.e., magnitude of E-field),
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m, and the testing input point (i.e., desired transmission frequency), x∗, the posterior conditional GP
given x∗, x and m is represented by Equation (11):

p(m∗|x∗, x, m) = GP(m∗
∣∣∣µ, Σ). (11)

The p(m∗|x∗, x, m) was normally distributed with the predictive mean, µ, (estimated EM response
for untried frequency along the source-receiver separation distances) and predictive variance, Σ,
in terms of 95% confidence interval. The output of the GP regression model for every depth of
hydrocarbon is presented by their mean and variance as defined below:

µ = KT
∗ K−1

ε y, (12)

Σ = K∗∗ −KT
∗ K−1

ε K∗. (13)

Note that we provided information of the tried and untried transmission frequencies of EM
wave used in the methodology in the next section. Figure 2 represents a simplified version of the GP
methodological flow.

Figure 2. Simplified methodological flow of GP regression modelling in SBL data generated through
the CST software.

3.3. Model Validation

In statistics, forecast error measurement plays an important role to determine the accuracy of
estimations. This procedure can become a model validator to identifying whether the estimated
model is reliable to be used or not. For this research work, we utilized three common forecast
error measurements to examine the reliability of the developed 2D forward GP model for untried
transmission low frequencies. Mean square error (MSE) was calculated to determine differences
between the estimates and the true values corresponding to the expected value of squared loss, mean
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absolute deviation (MAD) was calculated to measure unsigned error size in units and mean absolute
percent error (MAPE) was calculated to measure error size in terms of percentage. The true value (output
generated through CST software) was denoted as y, while the estimate (data modeled by the GP) was
represented as y∗. Formulas of MSE, MAD, and MAPE are defined by Equations (14)–(16), respectively:

MSE =
1
a

∑
(y− y∗)2, (14)

MAD =
1
a

∑∣∣∣y− y∗
∣∣∣, (15)

MAPE =

1
a

∑ ∣∣∣y− y∗
∣∣∣∣∣∣y∣∣∣
× 100%, (16)

where a is the total number of data used in the error measurement. Small values of MSE, MAD,
and MAPE indicate that data modeled by the GP regression are reliable and well-fitted with the CST
computer outputs.

4. Results and Discussion

The GP algorithms used in this paper was the GPML Matlab Code version 4.2 (2018) written by
Rasmussen, C.E. and Nickisch, H. which can be found in [41]. This research work considered the static
source-receiver separation distance phenomenon in the SBL modelling where the transmitter was kept
stationary at the center of the SBL models. Here, for the target model, we exercised eight (8) different
frequencies (0.0625–0.5 Hz with an increment of 0.0625 Hz) at three (3) different depths of hydrocarbon
(1000 m, 2000 m, and 3000 m from the seabed) to acquire the prior information. At every hydrocarbon
depth, there were eight datasets which represented EM responses from the target models. The CST
computer outputs (i.e., EM responses from target models) for all tested frequencies are depicted in
Figures 3–5.

Figure 3. EM responses obtained from the target models, where the hydrocarbon layer was located at
1000 m from the seabed, for multiple frequencies (0.0625–0.5 Hz with an increment of 0.0625 Hz each).
The total source-receiver separation distance is 20,000 m.
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Figure 4. EM responses obtained from the target models, where the hydrocarbon layer was located at
2000 m from the seabed, for multiple frequencies (0.0625–0.5 Hz with an increment of 0.0625 Hz each).
The total source-receiver separation distance is 20,000 m.

Figure 5. EM responses obtained from the target models, where the hydrocarbon layer was located at
3000 m from the seabed, for multiple frequencies (0.0625–0.5 Hz with an increment of 0.0625 Hz each).
The total source-receiver separation distance is 20,000 m.

Figures 3–5 showed the magnitude of the corresponding horizontal E-field for three different
overburden thicknesses and eight tried low transmission frequencies. Logarithmic scale with base 10
was applied on the y-axis to make the data more interpretable. Total computation simulation time
for the CST software to compute all the 24 datasets of the EM responses (i.e., eight datasets for each
hydrocarbon depth) was approximately 90 min (~1 h and 30 min). The CST computer outputs were in
good agreement with the trend of real-field EM responses. The strength of the magnitude of E-field
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decreases as source-receiver separation distance is further apart. Furthermore, E-field strength also
decreases as hydrocarbon depth increases. Since the data were acquired with a source located at the
center of the SBL model, the EM responses were symmetrical from 0 m to 10,000 m and 10,000 m to
20,000 m. Therefore, we only considered EM responses from 11,000 m to 19,000 m to be processed
and fitted by the GP regression (by assuming that the direct wave dominated the first kilometer of
the offset from the center). Two-dimensional (2D) forward GP model was developed to provide the
information of EM response for all possible frequencies (tried and untried) from 0.0625 Hz to 0.5 Hz at
all tested depths of hydrocarbon. The contour plots of EM response were depicted in Figures 6–8.

Figure 6. Contour plot of the 2D forward GP model. EM responses versus source-receiver separation
distance for all tried and untried transmission frequencies (0.0625–0.5 Hz) at overburden thickness of
1000 m.

Figure 7. Contour plot of the 2D forward GP model. EM responses versus source-receiver separation
distance for all tried and untried transmission frequencies (0.0625–0.5 Hz) at overburden thickness of
2000 m.
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Figure 8. Contour plot of the 2D forward GP model. EM responses versus source-receiver separation
distance for all tried and untried transmission frequencies (0.0625–0.5 Hz) at overburden thickness of
3000 m.

Based on Figures 6–8, the x-axis represented source-receiver separation distance (i.e., offset)
and the y-axis represented multi-low-frequency (0.0625–0.5 Hz). The log10 of the magnitudes of
the E-field are represented and differentiated by the various color codes. The processing time to
acquire these three contour plots was less than five (5) minutes with, in total, 45 datasets of EM
response being successfully contoured. This shows that the GP model is capable of providing the
multi-low-frequency EM information with low time consumption, while the computer simulation could
take a few hours to generate those 45 datasets ((8 tried frequencies + 7 untried frequencies) × 3 depths).
The tried and untried frequencies at all tested hydrocarbon depths used in the GP methodology are
tabulated in Table 2. As mentioned earlier, eight frequencies were employed in the SBL modelling as
observed information. Note that any frequency can be exercised in the GP methodology as the untried
transmission frequency as long as the prior knowledge is capable of providing significant information
to the GP regression model.

Table 2. Tried and untried frequencies (0.0625–0.5 Hz) for the target models with all hydrocarbon
depths. There were 15 datasets of EM response for each depth, hence the total number of datasets were
45. All frequencies employed in this research work were set to have a gap of 0.03125.

Tried Frequency
(Hz)

Untried Frequency
(Hz)

0.0625 0.09375
0.1250 0.15625
0.1875 0.21875
0.2500 0.28125
0.3125 0.34375
0.3750 0.40625
0.4375 0.46875
0.5000

Next, the reliability of the GP model providing the magnitude of the E-field information at the
untried transmission frequencies was examined as well. We chose three random untried frequencies
between 0.0625 Hz and 0.5 Hz as listed in Table 2 which were 0.09375 Hz, 0.28125 Hz, and 0.46875 Hz
in order to identify whether the GP can provide the EM profile at untried/unobserved frequency
with adequate accuracy or not. As mentioned before, we exercised three different forecast error
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measurements, which were MSE, MAD, and MAPE for model validation purposes. The results are
tabulated in Table 3.

Table 3. Forecast error measurement for the three untried transmission frequencies (0.09375 Hz,
0.28125 Hz, and 0.46875 Hz) at all tested depths of hydrocarbon (1000 m, 2000 m, and 3000 m from
the seabed).

Frequency (Hz) HC Depth (m) MSE MAD MAPE (%)

0.09375
1000 0.00025947 0.01158183 0.1737
2000 0.00003344 0.00319856 0.0421
3000 0.00006727 0.00454916 0.0592

0.28125
1000 0.00008080 0.00687243 0.1023
2000 0.00000033 0.00034942 0.0044
3000 0.00014778 0.00523686 0.0582

0.46875
1000 0.00001381 0.00311347 0.0458
2000 0.00000237 0.00104498 0.0128
3000 0.00001470 0.00206036 0.0216

Based on Table 3, the MSE, MAD, and MAPE revealed very small values and percentages at all three
untried frequencies. On average, the resulting MSE and MAD values were approximately ~0.000069
and ~0.0042, respectively, while the average of MAPE was approximately 0.06% (which is <0.1%).
These results indicated that data estimated by the GP were reliable and fit well with the CST outputs
even though for the untried/unobserved frequencies. After validating the 2D GP models, the average
percentage difference was calculated to compare the trend of the EM responses obtained from the SBL
model with the presence of hydrocarbon (target model) and the EM responses obtained from the model
without a hydrocarbon layer (reference model). A high-percentage difference indicates the trend that
both EM responses are far apart. This means that there is a significant difference between the target and
reference EM responses. We used Equation (17) to calculate the average percentage difference (APD):

APD =
1
a

∑
∣∣∣target response− re f erence response

∣∣∣(∣∣∣target response
∣∣∣− ∣∣∣re f erence response

∣∣∣)/2

× 100%, (17)

where a is the number of data. The histogram depicted in Figure 9 represents the average percentage
difference between the target and the reference EM responses for eight (8) transmission frequencies
and all tested depths of hydrocarbon.

From Figure 9, we can see that, overall, the average percentage differences for the frequency of
0.0625 Hz revealed the smallest percentage for every hydrocarbon depth, while the average percentage
differences for 0.5 Hz showed the highest percentage for every hydrocarbon depth. By comparing all
the average percentage differences at all depths, a frequency of 0.0625 Hz for the hydrocarbon depth of
3000 m (grey) revealed the smallest APD, which was 0.09%, and a frequency of 0.5 Hz for hydrocarbon
at the depth of 1000 m (blue) revealed the highest APD, which was 17.30%. These results indicated
that the SBL data between the target and the reference responses become very difficult to understand
and analyze as the depth of hydrocarbon increases (assuming that the parameters involved were
remained). Hence, the model resolution between these two responses (target and reference) decreased
as the hydrocarbon depth increased. Therefore, we provided an MVO analysis by utilizing the 1D GP
regression model to quantify the uncertainty. In this part, we only showed MVO plots fitted by the GP
for a frequency of 0.0625 Hz (the lowest resulting APD for all depths) to numerically analyze the EM
responses, as shown in Figure 10.
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Figure 9. Histogram of the average percentage difference between the target EM responses and the
reference responses. There were three histograms which represented the depths of hydrocarbon.
The average percentage difference was calculated for every transmission frequency used in this research
work (0.0625–0.5 Hz with an increment of 0.0625 Hz).

Figure 10. 1D GP models of MVO responses observed along the receiver line from four different SBL
models at a frequency of 0.0625 Hz: (i) model with hydrocarbon depth of 1000 m (blue); (ii) model with
hydrocarbon depth of 2000 m (green); (iii) model with hydrocarbon depth of 3000 m (red); (iv) model
with no hydrocarbon layer (magenta).

Note that the GP model provides predictive variance as an uncertainty quantification. Thus, in this
research work, the confidence bar can become an uncertainty quantifier to the MVO analysis whether
the hydrocarbon-filled reservoir is significantly present or not. Note that the hydrocarbon-filled
reservoir can be inferred as present if variances between the fitted target and the reference responses
are not overlapping with each other. Based on Figure 10, the target and the reference EM responses
for a frequency of 0.0625 Hz were very difficult to distinguish when hydrocarbon was 3000 m from
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the seabed. Since the EM trend and 95% confidence intervals of the EM responses were unclear and
difficult to interpret, especially for distinguishing the target response at a depth of 3000 m and the
reference model, we provided a zoomed-in scale of the variance for all the fitted EM responses shown
in Figure 10. This is depicted in Figure 11.

Figure 11. Zoomed-in scale of the 1D GP models for a frequency of 0.0625 Hz. The grey-colored bar is
the 95% confidence interval (predictive variance) provided by the GP. The “cross” denotes the testing
data involved in the GP regression.

Based on Figure 11, there were four fitted EM responses indicating the three target responses
(for hydrocarbon depths of 1000 m, 2000 m, and 3000 m) and one reference response for a frequency of
0.0625 Hz. By referring to the figure, we can see that the EM responses at a hydrocarbon depths of
1000 m and 2000 m with the reference response were certainly comparable and can be distinguished
since the variance of each 1D GP model did not overlap each other. However, at this frequency, it was
very difficult to distinguish the SBL data between the target response at a hydrocarbon depth of 3000 m
and the reference response. Based on the observation from the fitted 1D GP model (red-colored and
magenta-colored curves), we can certainly claim that these responses were distinguishable until at
source-receiver offset of approximately less than 18,000 m (<~8 km from the source). At an offset of
~18,000 m or more (~18,000 m–20,000 m), EM responses from the reference model suddenly become
higher than the target EM responses. Hence, the EM responses become irrelevant and the confidence
bars overlapped each other. From this result, for a frequency of 0.0625 Hz, the predictive variance
numerically strengthened the claim that the presence of the hydrocarbon reservoir at a hydrocarbon
depth of 3000 m was very difficult to identify at a far source-receiver offset and, hence, the model
resolution can become very low at these far offsets. Next, we also studied the anomaly trend obtained
from the normalized MVO for a frequency of 0.0625 Hz whether the trend is in good agreement with
the resulting predictive variance (depicted in Figures 10 and 11) or not, especially when the depth
of the hydrocarbon is 3000 m. Therefore, we provided the normalized MVO plot for a frequency of
0.0625 Hz (the lowest tried frequency). This is depicted in Figure 12.

From Figure 12, we can see that these three normalized responses showed anomalies where the
responses increase gradually as the source-receiver offsets are further apart. The anomalies can be clearly
seen when the offset distance was more than ~12,000 m (>~2 km from the source) for the blue-colored
response and more than ~14,000 m (>~4 km from the source) for the reddish-yellow-colored response.
However, the anomaly of the normalized response at a hydrocarbon depth of 3000 m seemed not
as significant when compared to the other two normalized responses. The grey-colored response
showed an irrelevant trend of the normalized magnitudes at far offset distances (>~17,500 m) where
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the normalized magnitudes suddenly decreased at these offsets. This means that when hydrocarbon
was at 3000 m and above, it was very difficult to understand the anomaly at the far offsets even though
the lowest transmission frequency (0.0625 Hz) was used. This result is in good agreement with the
results in Figures 10 and 11 (using the GP regression model).

Figure 12. Normalized MVO responses for a transmission frequency of 0.0625 Hz observed along the
receiver line for three different hydrocarbon depths: (i) normalized MVO for a hydrocarbon depth of
1000 m (blue); (ii) normalized MVO for a hydrocarbon depth of 2000 m (reddish-yellow); (iii) normalized
MVO for a hydrocarbon depth of 3000 m (grey).

Here, we continued to study the anomaly trend of the normalized MVO for the untried transmission
frequencies (0.09375 Hz, 0.28125 Hz, and 0.46875 Hz) by utilizing the developed 2D GP models. Since the
estimated EM responses have been validated in the previous section, we utilized the MVO responses
in the 2D GP models at all depths of hydrocarbon, which are 1000 m, 2000 m, and 3000 m. This is one
of the advantages of this GP methodology where any EM response at any transmission frequency
could be used and utilized beforehand for in-depth analysis to understand the responses and acquire
the best model resolution for hydrocarbon detection in SBL applications. The normalized magnitudes
for those three untried frequencies are depicted in Figures 13–15.

Based on Figures 13–15, the x-axis represents the offset distance, while the y-axis represents
the log10 of the normalized magnitudes at three different depths of hydrocarbon for a transmission
frequency of 0.0625 Hz. Here, we can see that anomalies were present in the normalized magnitudes
for all three selected untried transmission frequencies as well. Note that all the SBL models were
free from any obstructions and noises. Thus, the normalized magnitudes should increase gradually
as the offset distance increased. However, based on Figures 13–15, the normalized magnitudes at a
hydrocarbon depth of 3000 m for all the untried frequencies become irrelevant at far source-receiver
offset distances (>~17,500 m). The magnitudes suddenly decrease after gradually increasing from the
start (from the source). From these results, we can infer that when the hydrocarbon depth was at 3000 m
and above beneath the seabed, hydrocarbon anomalies were difficult to interpret at far source-receiver
separation distances even though multi-low-frequencies (0.0625 Hz–0.5 Hz) were employed in the
SBL application.
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Figure 13. Normalized MVO responses for transmission frequency of 0.09375 Hz: (i) normalized MVO
for a hydrocarbon depth of 1000 m (blue); (ii) normalized MVO for a hydrocarbon depth of 2000 m
(reddish-yellow); (iii) normalized MVO for a hydrocarbon depth of 3000 m (grey).

Figure 14. Normalized MVO responses for transmission frequency of 0.28125 Hz: (i) normalized MVO
for a hydrocarbon depth of 1000 m (blue); (ii) normalized MVO for a hydrocarbon depth of 2000 m
(reddish-yellow); (iii) normalized MVO for a hydrocarbon depth of 3000 m (grey).
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Figure 15. Normalized MVO responses for transmission frequency of 0.46875 Hz: (i) normalized MVO
for a hydrocarbon depth of 1000 m (blue); (ii) normalized MVO for a hydrocarbon depth of 2000 m
(reddish-yellow); (iii) normalized MVO for a hydrocarbon depth of 3000 m (grey).

5. Conclusions

We presented an MVO analysis of the EM surveying technique by calibrating models from the
stochastic process (Gaussian process regression) and the computer experiment (CST computer outputs).
2D GP models were developed to provide information of multi-low-frequency EM data at various
observations (numerous realizations of input-output pairs). Based on the results obtained from the
model validation, values of the MSE, MAD, and MAPE revealed that the 2D GP regression was
able to model and estimate the EM profile for all the tried and untried transmission frequencies at
three different depths of hydrocarbon. The processing time and the reliability of the GP providing
the EM profile information proved that this model calibration was an efficient methodology. Next,
the predictive variance with a 95% confidence interval certainly showed that target responses from
hydrocarbon depths of 1000 m and 2000 m and the reference response were distinguishable at the
lowest tried frequency, which was 0.0625 Hz. However, confidence bars between the target response
from a hydrocarbon depth of 3000 m and the reference response from a frequency of 0.0625 Hz
overlapped each other at the far source-receiver offsets. Results from the normalized magnitudes
for the tried frequency (0.0625 Hz) and untried frequencies (0.09375 Hz, 0.28125 Hz, and 0.46875 Hz)
also were in good agreement with the resulting predictive variance. This concluded that the model
resolution of the MVO plots at a hydrocarbon depth of 3000 m was low at the offset distance of more
than ~17,500 m (>~7.5 km from the source) even though multiple low frequencies were employed in
the survey. Coming to a deeper hydrocarbon-filled situation, in-depth analysis is required before any
decision-making is made. Therefore, this attempt may help the EM imaging by providing additional
and beneficial information to the scanning or risk analysis with low time-consumption for better model
resolution of subsurface modelling in SBL applications.
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