6,722 research outputs found

    Functionality in single-molecule devices: Model calculations and applications of the inelastic electron tunneling signal in molecular junctions

    Full text link
    We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Green's functions and ab-initio calculations to study the inelastic transport properties of single-molecule junctions. First we apply a full non-equilibrium Green's function technique to a model system with electron-vibration coupling. We show that the features in the inelastic electron tunneling spectra (IETS) of the molecular junctions are virtually independent of the nature of the molecule-lead contacts. Since the contacts are not easily reproducible from one device to another, this is a very useful property. The IETS signal is much more robust versus modifications at the contacts and hence can be used to build functional nanodevices. Second, we consider a realistic model of a organic conjugated molecule. We use ab-initio calculations to study how the vibronic properties of the molecule can be controlled by an external electric field which acts as a gate voltage. The control, through the gate voltage, of the vibron frequencies and (more importantly) of the electron-vibron coupling enables the construction of functionality: non-linear amplification and/or switching is obtained from the IETS signal within a single-molecule device.Comment: Accepted for publication in Journal of Chemical Physic

    Evidence of 1D behaviour of He4^4 confined within carbon-nanotube bundles

    Full text link
    We present the first low-temperature thermodynamic investigation of the controlled physisorption of He4^{4} gas in carbon single-wall nanotube (SWNT) samples. The vibrational specific heat measured between 100 mK and 6 K demonstrates an extreme sensitivity to outgassing conditions. For bundles with a few number of NTs the extra contribution to the specific heat, Cads_{ads}, originating from adsorbed He4^{4} at very low density displays 1D behavior, typical for He atoms localized within linear channels as grooves and interstitials, for the first time evidenced. For larger bundles, Cads_{ads} recovers the 2D behaviour akin to the case of He4^{4} films on planar substrates (grafoil).Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    A Novel Method for Optimal Solution of Fuzzy Chance Constraint Single-Period Inventory Model

    Get PDF
    A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demand D~j for each product j in the objective function is considered as a fuzzy random variable (FRV) and with the available storage space area W~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given

    Isoflurane Modulates Cardiac Mitochondrial Bioenergetics by Selectively Attenuating Respiratory Complexes

    Get PDF
    Mitochondrial dysfunction contributes to cardiac ischemia–reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2 mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K+-pyruvate/malate (PM) or complex II substrate K+-succinate (SUC) at physiological levels of extra-matrix free Ca2 + (~ 200 nM) and Na+ (10 mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection

    Enhanced charge-independent Mitochondrial Free Ca\u3csup\u3e2+\u3c/sup\u3e and Attenuated ADP-induced NADH Oxidation by Isoflurane: Implications for Cardioprotection

    Get PDF
    Modulation of mitochondrial free Ca2 + ([Ca2 +]m) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia–reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca2 +]m and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2 mM) on the magnitudes and time-courses of [Ca2 +]m and mitochondrial redox state (NADH), membrane potential (ΔΨm), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10 mM Na+- or K+-pyruvate/malate (NaPM or KPM) or Na+-succinate (NaSuc) followed by additions of isoflurane, 0.5 mM CaCl2 (≈ 200 nM free Ca2 + with 1 mM EGTA buffer), and 250 μM ADP. Isoflurane stepwise: (a) increased [Ca2 +]m in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨm and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨm, and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨm, and matrix contraction with PM substrates. These findings suggest that isoflurane\u27s effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca2 + uptake by inhibiting the Na+/Ca2 + exchanger (NCE), independent of changes in ΔΨm and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca2 +]m, while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level

    Growth of Oriented Au Nanostructures: Role of Oxide at the Interface

    Full text link
    We report on the formation of oriented gold nano structures on Si(100) substrate by annealing procedures in low vacuum (\approx10-2 mbar) and at high temperature (\approx 975^{\circ} C). Various thicknesses of gold films have been deposited with SiOx (using high vacuum thermal evaporation) and without SiOx (using molecular beam epitaxy) at the interface on Si(100). Electron microscopy measurements were performed to determine the morphology, orientation of the structures and the nature of oxide layer. Interfacial oxide layer, low vacuum and high temperature annealing conditions are found to be necessary to grow oriented gold structures. These gold structures can be transferred by simple scratching method.Comment: 13 pages, 3 figures, Accepted in J. Appl. Phy

    Optimisation of Drift Region Width with Reference to Noise in Si DAR IMPATT Diode

    Get PDF

    The ART of IAM: The Winning Strategy for the 2006 Competition

    No full text
    In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)

    Does Luttinger liquid behaviour survive in an atomic wire on a surface?

    Full text link
    We form a highly simplified model of an atomic wire on a surface by the coupling of two one-dimensional chains, one with electron-electron interactions to represent the wire and and one with no electron-electron interactions to represent the surface. We use exact diagonalization techniques to calculate the eigenstates and response functions of our model, in order to determine both the nature of the coupling and to what extent the coupling affects the Luttinger liquid properties we would expect in a purely one-dimensional system. We find that while there are indeed Luttinger liquid indicators present, some residual Fermi liquid characteristics remain.Comment: 14 pages, 7 figures. Submitted to J Phys
    corecore