66 research outputs found

    Failure of Percutaneous Endoscopic Resection of a Renal Cystic Nephroma on Longer-Term Follow-Up

    Full text link
    In 2005 we reported in this journal the treatment of cystic nephroma, a rare but presumed benign renal tumor, with percutaneous resection. Initial follow-up confirmed removal of the intra-pelvic portion of the cystic nephroma and persistence of the unresected intra-parenchymal portion. Surveillance with computed tomography revealed gradual regrowth of the mass, ultimately resulting in a size greater than that at the time of initial resection. Laparoscopic radical nephrectomy without adrenalectomy revealed benign cystic nephroma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63237/1/end.2007.0441.pd

    Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty

    Full text link
    Testosterone production surges during puberty and orchestrates massive growth and reorganization of the prostate gland, and this glandular architecture is maintained thereafter throughout adulthood. Benign prostatic hyperplasia (BPH) and prostate adenocarcinoma (PCA) are common diseases in adulthood that do not develop in the absence of androgens. Our objective was to gain insight into gene expression changes of the prostate gland at puberty, a crucial juncture in prostate development that is androgen dependent. Understanding the role played by androgens in normal prostate development may provide greater insight into androgen involvement in prostatic diseases. Benign prostate tissues obtained from pubertal and adult age group cadaveric organ donors were harvested and profiled using 20,000 element cDNA microarrays. Statistical analysis of the microarray data identified 375 genes that were differentially expressed in pubertal prostates relative to adult prostates including genes such as Nkx3.1, TMEPAI, TGFBR3, FASN, ANKH, TGFBR2, FAAH, S100P, HoxB13, fibronectin, and TSC2 among others. Comparisons of pubertal and BPH expression profiles revealed a subset of genes that shared the expression pattern between the two groups. In addition, we observed that several genes from this list were previously demonstrated to be regulated by androgen and hence could also be potential in vivo targets of androgen action in the pubertal human prostate. Promoter searches revealed the presence of androgen response elements in a cohort of genes including tumor necrosis factor‐α induced adipose related protein, which was found to be induced by androgen. In summary, this is the first report that provides a comprehensive view of the molecular events that occur during puberty in the human prostate and provides a cohort of genes that could be potential in vivo targets of androgenic action during puberty.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154303/1/fsb2fj042415fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154303/2/fsb2fj042415fje-sup-0001.pd

    Copy number and gene expression differences between African American and Caucasian American prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of our study was to investigate the molecular underpinnings associated with the relatively aggressive clinical behavior of prostate cancer (PCa) in African American (AA) compared to Caucasian American (CA) patients using a genome-wide approach.</p> <p>Methods</p> <p>AA and CA patients treated with radical prostatectomy (RP) were frequency matched for age at RP, Gleason grade, and tumor stage. Array-CGH (BAC SpectralChip2600) was used to identify genomic regions with significantly different DNA copy number between the groups. Gene expression profiling of the same set of tumors was also evaluated using Affymetrix HG-U133 Plus 2.0 arrays. Concordance between copy number alteration and gene expression was examined. A second aCGH analysis was performed in a larger validation cohort using an oligo-based platform (Agilent 244K).</p> <p>Results</p> <p>BAC-based array identified 27 chromosomal regions with significantly different copy number changes between the AA and CA tumors in the first cohort (Fisher's exact test, P < 0.05). Copy number alterations in these 27 regions were also significantly associated with gene expression changes. aCGH performed in a larger, independent cohort of AA and CA tumors validated 4 of the 27 (15%) most significantly altered regions from the initial analysis (3q26, 5p15-p14, 14q32, and 16p11). Functional annotation of overlapping genes within the 4 validated regions of AA/CA DNA copy number changes revealed significant enrichment of genes related to immune response.</p> <p>Conclusions</p> <p>Our data reveal molecular alterations at the level of gene expression and DNA copy number that are specific to African American and Caucasian prostate cancer and may be related to underlying differences in immune response.</p

    The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3.</p> <p>Results</p> <p>The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues.</p> <p>Conclusion</p> <p>These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.</p

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore