8,651 research outputs found

    Power Corrections to Fragmentation Functions in Non-Singlet Deep Inelastic Scattering

    Full text link
    We investigate the power-suppressed corrections to the fragmentation functions of the current jet in non-singlet deep inelastic lepton-hadron scattering. The current jet is defined by selecting final-state particles in the current hemisphere in the Breit frame of reference. Our method is based on an analysis of one-loop Feynman graphs containing a massive gluon, which is equivalent to the evaluation of leading infrared renormalon contributions. We find that the leading corrections are proportional to 1/Q21/Q^2, as in e+ee^+e^- annihilation, but their functional forms are different. We give quantitative estimates based on the hypothesis of universal low-energy behaviour of the strong coupling.Comment: 14 pages, 4 figures, LaTeX2e, uses JHEP.cls (included) and epsfi

    Electronic structure and magnetism in doped semiconducting half-Heusler compounds

    Full text link
    We have studied in details the electronic structure and magnetism in M (Mn and Cr) doped semiconducting half-Heusler compounds FeVSb, CoTiSb and NiTiSn (XMx_{x}Y1x_{1-x}Z) in a wide concentration range using local-spin density functional method in the framework of tight-binding linearized muffin tin orbital method(TB-LMTO) and supercell approach. Our calculations indicate that some of these compounds are not only ferromagnetic but also half-metallic and may be useful for spintronics applications. The electronic structure of the doped systems is analyzed with the aid of a simple model where we have considered the interaction between the dopant transition metal (M) and the valence band X-Z hybrid. We have shown that the strong X-d - M-d interaction places the M-d states close to the Fermi level with the M-t2g_{2g} states lying higher in energy in comparison to the M-eg_{g} states. Depending on the number of available d-electrons, ferromagnetism is realized provided the d-manifold is partially occupied. The tendencies toward ferromagnetic(FM) or antiferromagnetic(AFM) behavior are discussed within Anderson-Hasegawa models of super-exchange and double-exchange. In our calculations for Mn doped NiTiSn, the strong preference for FM over AFM ordering suggests a possible high Curie temperature for these systems.Comment: 14 pages, 6 figure

    Measuring Visual Complexity of Cluster-Based Visualizations

    Full text link
    Handling visual complexity is a challenging problem in visualization owing to the subjectiveness of its definition and the difficulty in devising generalizable quantitative metrics. In this paper we address this challenge by measuring the visual complexity of two common forms of cluster-based visualizations: scatter plots and parallel coordinatess. We conceptualize visual complexity as a form of visual uncertainty, which is a measure of the degree of difficulty for humans to interpret a visual representation correctly. We propose an algorithm for estimating visual complexity for the aforementioned visualizations using Allen's interval algebra. We first establish a set of primitive 2-cluster cases in scatter plots and another set for parallel coordinatess based on symmetric isomorphism. We confirm that both are the minimal sets and verify the correctness of their members computationally. We score the uncertainty of each primitive case based on its topological properties, including the existence of overlapping regions, splitting regions and meeting points or edges. We compare a few optional scoring schemes against a set of subjective scores by humans, and identify the one that is the most consistent with the subjective scores. Finally, we extend the 2-cluster measure to k-cluster measure as a general purpose estimator of visual complexity for these two forms of cluster-based visualization

    LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    Get PDF
    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites

    Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4

    Full text link
    We present a comparative study of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4 (Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state at a lower critical temperature Tc_c=13.6K than in Cu-2252(Cl) (Tc_c=18K) can be well understood in terms of the modified interaction paths. We identify the relevant structural changes between the two systems and discuss the hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden 200

    Geometric Transition versus Cascading Solution

    Get PDF
    We study Vafa's geometric transition and Klebanov - Strassler solution from various points of view in M-theory. In terms of brane configurations, we show the detailed equivalences between the two models. In some limits, both models have an alternative realization as fourfolds in M-theory with appropriate G-fluxes turned on. We discuss some aspects of the fourfolds including how to see the transition and a possible extension to the non-supersymmetric case.Comment: 34 pages, LaTex, 2 figures; v2: Some comments added and references updated. Final version to appear in JHE

    Semiclassical quantisation of space-times with apparent horizons

    Full text link
    Coherent or semiclassical states in canonical quantum gravity describe the classical Schwarzschild space-time. By tracing over the coherent state wavefunction inside the horizon, a density matrix is derived. Bekenstein-Hawking entropy is obtained from the density matrix, modulo the Immirzi parameter. The expectation value of the area and curvature operator is evaluated in these states. The behaviour near the singularity of the curvature operator shows that the singularity is resolved. We then generalise the results to space-times with spherically symmetric apparent horizons.Comment: 52 pages, 4 figure

    The Type I D-instanton and its M-theory Origin

    Get PDF
    The tree-level amplitude for the scattering of two gauge particles constrained to move on the two distinct boundaries of eleven-dimensional space-time in the Horava-Witten formulation of M-theory is constructed. At low momenta this reproduces the corresponding tree-level scattering amplitude of the E_8xE_8 heterotic string theory. After compactification to nine dimensions on a large circle with a suitable Wilson line to break the symmetry to SO(16)xSO(16) this amplitude is used to describe the scattering of two massive SO(16) spinor states - one from each factor of the unbroken symmetry group. The amplitude contains a component that is associated with the exchange of a Kaluza-Klein charge between the boundaries, which is interpreted as the exchange of a D-particle between orientifold planes in the Type IA theory. This is related by T-duality to the effect of a non-BPS D-instanton in the Type I theory which is only invariant under those elements of O(16)xSO(16) that are in SO(16)xSO(16).Comment: 24 pages, LaTeX, 1 figur
    corecore