"Mate available under NASA sponsorsmu
in the interest of early and wide dis. semination of Earth Resources Survey Program information and without liability for any use made te ...:20."

MI. 03
 E83-1022 ${ }^{\text {Sos -0-404 }}$ Tm. 85265 Ser

LANDSAT-4

 MULTISPECTRAL SCANNER (MSS) SUBSYSTEM RADIOMETRIC CHARACTERIZATION(E83-10226) lendSat-4 aultispecteal SCAMmer s83-21467 (GSS) SUbSyStem radiometric characterization (aSA) $77 \mathrm{p} \mathrm{hC} \mathrm{AOS/GF} \mathrm{AOJ} \mathrm{CSCl} 14 \mathrm{~B}$
Uncles

ORIGINAL PAGE IS OF POOR QUALITY

National Aeronaulcs and Space Aammatration

LANDSAT-4 MULTISPECTRAL SCANNER (MSS) SUBSYSTEM RADIOMETRIC CHARACTERIZATION

Editors

W. Alford and J. Barker

NASA/Goddard Space Flight Center
Greenbelt, Maryland

Prepared by
B. P. Clark and R. Dasgupta

Computer Sciences Corporation
8728 Colesville Road
Silver Spring, Maryland

February 1983

GODDARD SPACE FLIGHT CENTER
Greenbelt. Maryland

FOREWORD

The authers wish to acknowledge the support received from both government and contract personnel associated with the Landsat-4 program. Constructive discussions and useful data have been provided by both W. Webb and J. Bala of the National Aeronautics and Space Administration (NASA). Outside contractor support was provided by L. Beuhler from Operations Research, Incorporated, and by J. Dietz and P. Mallerbe frum the General Electric Corporation.

Many general references to the Landsat program are available to the public. Relevant information and data from these references have been extracted for incorporation $: n t$, this document. It is hoped that this will broaden the circulation of critical information carried in these documents. Of particular interest are four publications, two by the Hughes Aircraft Company and two by the General Electric Corporation. The titles of these documents are (1) "Multispectral Scanner, Final Report," HS-248-0010-0867, Hughes Aircraft Company (March 1982); (2) "MSS Protoflight Radiometric Calibration and Alignment Handbook," HS-248-1379, Hughes Aircraft Company (July 1981); (3) "Landsat-D MSS Baseline Test Procedure," ITP-LD-311, General Electric Corporation (September 1981); and (4) "MSS Standard Interface Document." GE-B0-78-034, General Electric Corporation (July 1978).

These documents contain explicit information pertaining to sensor and spacecraft level tests and their results. In addition, the document "Landsat-4 to Ground Station Interface Description," Revision 5. GSFC 435-D-400 (August 1982), has been referenced where appropriate. Data and other technical memoranda accessed include both NASA publications and presentation material used in May 1982 at the first Landsat-4 users' conference.

CONTENTS

Section Page
FOREWORD iii

1. INTRODUCTION 1-1
1.1 Overview $1-1$
1.2 Document Organization 1-3
2. LANDSAT-4 MSS SYSTEM DESCRIPTION 2-1
2.1 Scanner Optics for MSS. 2-1
2.2 Detectors and Electronics 2-3
2.3 Scarner Optics Operation 2-3
2.4 Mission Acquisitions 2-5
2.5 Comparison of Landsat 4 with Previous Landsats 2-7
2.6 Comparison of Unit Test Data with GE Thermal Vacuum Data $2-7$
3. MSS SPECTRAL CHARACTERIZATION 3-1
3.1 Objective 3-1
3.2 Procedure 3.2
3.3 Results 3-2
3.4 Comparison with Previous Landsats $3-2$
3.5 Conclusions 3-10
4. PRELAUNCH MSS SENSOR RADIOMETRIC CHARACTERIZATION 4-1
4.1 Introduction $4-1$
4.2 Calibration Procedure 4-4
5. POSTLAUNCH MSS RADIOMETRIC PROCESSING 5-1
5.1 Introduction 5-1
5.2 Radiometric Corrections 5-3
5.2.1 Radiometric Correction Using Calibration Wedge Data $5-3$
5.2.2 Radiometric Correction Using Scene Content 5-4
5.3 Detector Gain and Offset Update 5-8
$5.4 \mathrm{R}_{\text {max }}$ and $\mathrm{R}_{\text {min }}$ Update 5-11
6. LANDSAT-4 IMAGE PROCESSING DATA 6-1
6.1 Image Processing Parameter Files 6-1
6.2 Short-Term Parameter File 6-1
6.3 Calibration Modifiers. 6-3
6.4 Long-Term Parameter File 6-5

ILLUSTRATIONS

Figure Page
2-1 Schematic Diagram of MSS Optics 2-2
2-2 MSS Data Acquisition 2-4
2-3 Perspective of MSS Data Acquisition. 2-6
2-4 Landsat-4 Orbit Characteristics. 2-8
3-1 Relative Spectral Response for an MSS Sensor 3-3
4-1 Systematic MSS Video and Wedge Level Timing Sequence 4-2
4-2 Hysteresis Effects on Detector Readings 4-3
4-3 Spectral Radiant Emittance Plot for $76-\mathrm{cm}$ Integrating Sphere 4-6
4-4 Illustrative MSS Lamp Calibration Wedge $4-7$
4-5 Band Normalization of MSS Channel Gains and Offset 4-11
5-1 Flow Diagram for Postlaunch Radiometric Calibration 5-2
5-2 Flow Diagram of Scene Content Correction Processing. 5-7
5-3 Scene Segment Blending 5-9
TABLES
Table Page
2-1 MSS Differences for Landsat 3 and Landsat 4 2-9
3-1 MSS Optical Filter Specification $3-4$
3-2 Spectral Characterization by Channel for the Landsal-4 MSS 3-5
3-3 Characterization of Landsat-4 MSS (Band 1) and Comparison with Landsats 1, 2, and 3 3-6
3-4 Characterization of Landsat-4 MSS (Band 2) and Comparison with Landsats 1, 2, and 3 3-7

TABLES (Continued)

Table Page
3-5 Characterization of Landsat-4 MSS (Band 3) and Comparison with Landsats 1, 2, and 3 3-8
3-6 Characterization of Landsat-4 MSS (Band 4) and Comparison with Landsats 1, 2, and 3 3-9
6-1 Calibration Nominal Values Used in Each Mode of Sensor Operation 6-2
6-2 Multiplicative Modifiers (M) and Additive Modifiers (A) Currently Used in MIPS. 6-4
6-3 MIPS Parameters Record 6-6
6-4 Additional MIPS Parameters $6-9$
6-5 Decompression Tables for Bands 1,2, and 3 $6-10$
6-6 Decompressed Digital Values $6-11$
6-7 Calibration Coefficients for High-Gain, Prime Lamp $6-13$
6-8 Calibration Coefficients for Low-Gain, Primary Lamp 6-15
6-9 Calibration Coefficients for High-Gain, Redundant Lamp 6-16
6-10 Calibration Coefficients for Low-Gain, Redundant Lamp $6-17$
6-11 Calibration Wedge Offsets for the Prime Lamp 6-18
6-12 Calibration Wedge Offsets tor the Redundant Lamp 6-19
6-13 Geometric Image Tic-Mark and Annotation Parameters Carried in the Long-Term Record 6-20

SECTION 1

INTRODUCTION

1.1 OVERVIEW

The purpose of this document is to describe the radiometric calibration procedures for the Land-sat-4 Multispectral Scanner (MSS) subsystem. The topics covered are as follows:

- Instrument Description
- MSS Spectral Characteization
- Prelaunch MSS Radiometric Calibration
- Postlaunch MSS Radiometric Processing
- Exaniples of Current Data Resident on the MSS Image Processing System (MIPS)

The objective of the radiometric calibration is to relate viro digital levels on computer compatitle tapes (CCT's) to radiance into the sensor. To achieve this, the sensor must be calibrated with respect to a radiance source. The scanner subsystem includes such an internal radiance source (lamps). The basic function of the internal calibration system is to provide repetitive sets of voltages (digital counts) for each ietector for known input radiance levels. The digital values and their corresponding radiance levels are assumed to be related through a linear equation.

The radiance levels f the internal source are established by calibrating it with respect to known standard reference levels. Such a source is provided by the NASA $76-\mathrm{cm}$ ($30-\mathrm{inch}$) integrating sphere. During prelaunch calibration, the MSS is used as a transfer device between the integrating sphere and the internal lamp. The known radiance values from the integrating sphere and their corresponding digital counts for the detector outputs are used to establish each detector's linear transformation. This transformation is used in a subsequent step to obtain the radiance levels of the internal lamp.

The MSS instrument has six detectors for each band. The detectors for any given band may have different responses to different input radiances. Some detectors saturate at different input radiance

ORIGNAL PAGE IS RE POOR QUALITY

levels; others can register zero digital values corresponding to different low-input radiances. This causes striping in the MSS image. It is therefore necessary to map the responses of all six detectors of a given band to a common calibration curve. This results in one single straight line in the radiance-digital count plane for each band as shown below:

The radiance value corresponding to a digital count $\mathrm{V}_{\mathbf{c}}$ (on the CCT) resulting from the above straight line relationship is given by

$$
\begin{equation*}
R=V_{c} \frac{R_{\max }-R_{\min }}{V_{\max }}+R_{m \text { in }} \tag{1-1}
\end{equation*}
$$

where $R_{m a x}$ is the saturation radiance that resuits in maximum digital count $V_{m a x}$ (typically $=127$) and $R_{m \text { in }}$ is the lower cutoff radiance resulting in zero digital value. For Landsat 4, the most current values of $R_{\text {max }}$ and $R_{\text {min }}$ are given as follows:

Band	$R_{\mathrm{min}^{2}}$ $\left(\mathrm{~mW} / \mathrm{cm}^{2} / \mathrm{sr}\right)$	$\mathrm{R}_{\text {max }}$ $\left(\mathrm{mW} / \mathrm{cm}^{2} / \mathrm{sr}\right)$
	0.02	2.3
2	0.04	1.8
3	0.04	1.3
4	0.10	4.0

During prelaunch calibration analysis, linear regression coefficients are derived that relate the gain and offset of a detector to radiance levels of the internal lamp. These coefficients are used during postlaunch radiometric processing. Using these coefficients and data collected from the internal lamp during flight operation (often in conjunction with scene content data), digital counts versus radiance curves for each detector are once again generated. The final result is a Radiometric Lookup Table (RLUT) that allows a radiance value to be assigned tc each detector reading. In addition, all detectors of a given band are again mapped to a common calibration curve, anu a new equation identical with equation (1-1) is obtained with new values of $R_{\text {max }}$ and $R_{m m}$.

1.2 DOCUMENT ORGANIZATION

Section : describes the MSS instrument. and Section 3 summarizes the spectral characteristics of the MSS. Section 4 introduces the reader to the prelaunch calibration procedures. Section 5 discusses postlaunch radiometric processing. Section 6 presents examples of current data resident on MIPS.

SECTION 2

LANDS.AT-4 MSS SYSTEM DESCRIPTION

The MSS is familiar to most users of remotely sensed, digitally processed image data. The following instrument description will illustrate the scanner optics contiguration, the electro-optics coatiguration, and major performance issues relevant to the Landsat-4 M.SS.

The MSS is a scanner optic system capable of generating Earth imagery in four spectral bands. Data are gathered by either phototubes or photodiodes. multiplexed. and then transmitied to an Earth station. Images generated cover 185 km on a side. The ground-processing system artificially frames thes: data by using the world reference system set of scene centers established ty NASA.

2.1 SCANNER OPTICS FOR MSS

The scanner optic system is specially designed to ensure contiguous coverage for each band of innagery. Data are acquired when sunlight reflected from the Earth's surface impinges on an oscillatiag fiat mirror that redirects the Earth image into a Ritchey-Chretien-type Casegranian telescope, as shown at Figure :-1. The mirror oscillation sweeps the Earth mage across the focal plane of the telescope, at which pount a tiber optic bundle rece es the light and transmits data for each sensor to its respective phototute or photodiode. Bands 1. 2, and इ each use sin matched phototubes for detection: band 4 consists of six matched silicon photodiodes.

The tiber optic bundle is preceded by a rotating shutter wheel that allows image data to pass into the sensor arriy durng the west-to eeast ground track scan direction. Otherwise, ilfe mage data are obscured. Dung retrace motion of alternate scaris, light from a calabration lamp impuges on the sensor system.

Laght from the calibration lamp passes through a graded density tilter before recept by the focal plane tiber optic array. During ground proeessing. sin mage calibration wedge data words are used to extract digital catibration light levels for each of the : t sensors. The tumg sequence hetween

ORIGINAL PAGE IS
OF PCOR QUAIITY

Figure 2-1. Schematic Diagram of MSS Optics
video and calibration data is shown in Figure 2-2. The lower segment of this figure contains a representation of the relative position of the shutter wheel during video data and calibration data acquisition activities.

2.2 DETECTORS AND ELECTRONICS

Bands 1 through 3 use photomultiplier tabes (PMT's) as detectors; band 4 uses silicon photodiodes. The analog video outputs of each detector are sampled by the multiplexer during the west-to-east portion of the mirror scan. The video outputs from each detector are sampled, commutated, and multiplexed into a pulse amplitude modulated (PAM) data stream. The commutated samples of video are either transmitted directly to the analog-to-digital (A/D) converter for encoding or, for bands 1 through 3, directed to a logarithmic signal compression/amplifier and then to the encoder. This selection is made by ground command. The signal compression mode is normally used for bands 1 through 3 ; no signal compression is performed on band 4.

Compression is applied for the phototube signal to make t quantization noise match the de ctor noise. Band-4 noise nearly matches the quantization noise in the linear mode of operat

A high-gain mode is also selectable by ground command. In this mode, a gain of 3 is applied to bands 1 and 2 (only) before A/D conversion. This allows use of the large dy namic range of these detectors. Light reflected from the surface of the Earth is the input radiance to the scan assembly. The video signal for each detector is a voltage that corresponds to this input radiance. In order to get back the values of input radiances from the voltage, a mathematical transformation is required. This transformation relates real-time calibration data to minimum and maximum radiances used in ground processing and will be discussed in a subsequent section.

2.3 SCANNER OPTICS OPERATION

Using the optical configuration previously discussed, the operation of this system must ensure contiguous coverage of the ground track. Since Landsat 4 will ori tat 705 km rather than at

Figure 2-2. MSS Data Acquision

92C km used for previous Landsats, some special design changes were required to ensure that the coverage would meet requirements. This required alteration of the instantaneous field of view (IFOV), increase of the cross-track scan angle, and adjustment of the along-track satellite velocity to achieve coverage. The IFOV of each detector is 117.2 microradians. This subtends an Earth square area of 82.7 meters on one side at the planned mean equatorial orbital altitude of 705 km . Field stops are formed for each line imaged during a scan, and for each spectral band, by the square input end of an optical fiber Six of these fibers in each of four bands are arranged in a 4 by 6 matrix in the exit focal plare of the telescope.

As the flat mirror oscillates, it scans cross-track swaths of 185 kilometers. The lower satellite altitude required that the maximum amplitude of the mirror oscillation be increased to $\pm 3.75^{\circ}$ from its nominal position to accommodate this requirement. Previous Landsats used an 11.56° crosstrack field of view (FOV); Landsat 4 will use a 14.9° angle to achieve this ground coverage. The relative position of the shutter wheel during data acquisition is illustrated in Figure 2-2. Note that calibration data are acquired in altemate mirror sweeps.

Landsat 4 has been des: ened for a ground-track velocity of $6.82 \mathrm{~km} / \mathrm{sec}$. Oscillating the mirror at a frequency of 13.62 Hz creates a $73.42-\mathrm{msec}$ active scan and retrace period. The optical axis subpoint ('subsatellite point) moves 501 meters along the Earth's surface during this period. The width of the FOV of six detectors is also 501 meters. Thus, complete nonredundant coverage of the ground is obtained. The line swept by the first detector in one mirror sweep lies adjacent to the line scanned by the sixth detector of the previous mirror sweep.

2.4 MISSION ACQUISITIONS

A schematic of Landsat data acquisitions is presented in Figure 2-3. Each Landsat satellite has been placed in a circular Sun-synchronous orbit. This means that the orbit precesses in inerti 1 space at the same rate at which the Earth moves around the Sun. Past orbital dynamics for Landsat have resulted in the daily coverage of adjacent paths on adjacent ortits with the repeat coverage of any fixed orbital area fixed at 14 -day intervals.

Figure 2-3. Perspective of MSS Data Acquisition

Landsat 4 will differ slightly from this scheme because of its reduced altitude and angle of insertion. The result will be that adjacent orbits will not be covered on the same day as was done for Landsais 1,2, and 3. For example, for previous Landsats, if orbits 1,2 , and 3 would be covered on day 1, then orbits 15,16 , and 17 would be returnes on day 2 , since on any one day the satellite made 14 revolutions of the Earth. This allowed duplicate coverage on sequential days for images with sufficiently large scene center latitudes.

The Landsai 4 coverage pattern represents a departure from this scheme because of the orbital characteristics designed for the system. These characteristics (Figure 2-4) illustrate that there 2 will be 14-9/16 orbits per day and adjacent paths will be covered either 7 or 9 days after coverage of the primary path. This difference should be kept in mind by all users.

2.5 COMPARISON OF LANDSAT 4 WITH PREVIOUS LANDSATS

The optical system for Landsat 4 was altered slightly, by design, to accommodate the desired crosstrack coverage for the MSS. Other changes were also introduced that have been itemized by the document generated by the Hughes Aircraft Company (1982A). Table 2-1 contains a summary of some of these differences. Differences pertaining to vibration, mass properties, acceleration toierance, power distribution, the new command system interface, and the telemetry interface are described in detail in this Hughes report and will not be referenced further in this document because of lack of applicability to calibration.

2.6 COMPARISON OF UNIT TEST DATA WITH GE THERMAL VACUUM DATA

Direct comparisons of the Hughes and General Electric (GE) tests are not possible because of the difference in sequence between tests, the difference between reasons for tests, and the difference in configuration (i.e., unit tests versus total integrated system tests). One direct comparison is possible in the context of ensuring that no significant deviations occur. This comparison uses the sensor gain as measured through all orbits for each channel by both Hughes and GE. The plots are arranged so

Figure 2-4. Landsat-4 Orbit Characteristics

that the Hughes test data reside on the upper portion of the page and the GE data on the lower portion of the page. These results are presented in detail in Appendix A.

SECTION 3

MSS SPECTRAL CHARACTERIZATION

3.1 OBJECTIVE

This section summarizes the MSS spectral characterization work performed by Markham and Barker (1981). Their paper contains relative spectral response data for the Landsat-4 generation of Multispectral Scanners (MSS's). Reference is made to the protoflight (PF) and flight (F) models throughout their tables of data. The PF model is currently in orbit as the Landsat-4 MSS sensor system. The F model is to be used in the future. The reader should therefore associate PF data with current capabilities and F data with future applications. In this paper, a comparison was made between simulated radiometric response for Landsat 4 and equivalent data for Landsats 1,2, and 3.

Channel-by-channel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The primary objective of their study was to make available to the Landsat user community data on the spectral characteristics of these two sensors, including a characterization of the variability within and differences between the two new sensor systems. These data can be used by individuai investigators to assess MSS data utility for each unique application. A second objective was to provide, through simulation, an estimate of the potential contribution of spectral differences between channels to within-band striping, often referred to as "spectral striping." This should not be confused with radiometric striping, which is due to gain or offset differences between channels within a band. Since spectral striping cannot be removed by uniform radiometric calibration, it represents a fundamental limit to the ability to remove banding.

Subsection 3.2 describes procedures used in this spectral analysis; subsection 3.3 presents some results obtained by Markham and Barker; subsection 3.4 compares Landsat-4 data with those from Landsats 1,2 , and 3 ; and subsection 3.5 presents some concluding remarks resulting from this comparison.

3.2 PROCEDURE

Relative spectral response (RSR) curves for each channel of the Landsat-4 series MSS's (Hughes, 1980, 1981a, and 1981b), as well as the MSS's on Landsat 1, Landsat 2 (Norwood et al., 1972), and Landsat 3 (Felkel et al., 1977), were digitized at 10 -nm intervals for bands 1,2 , and 3 and at 20-nm intervals for band 4. Data acquired in 1981 for the current MSS were used for this characterization.

From the digitized curves, the following attributes were computed:

- Lower bandedge (50 percent relative response point)
- Upper bandedge (50 percent relative response point)
- Lower edge slope interval (width between lower 5 and 50 percent response points)
- Upper edge slope interval (width between upper 5 and 50 percent response points)
- Spectral flatness (maximum positive and negative deviation from mean response in central 70 percent of nominal bandpass)

These five characteristics were considered appropriate to characterize the overall relative spectral response. In addition, bandwidth (bandedge to bandedge) was calculated. For each band, the band mean (the average value of the characteristic for the six channels in the band) and the band standard deviation were also calculated.

3.3 RESULTS

Data obtained by Markham and Barker are included for the protoflight MSS system, with the authors' permission. Figure 3-1 shows the resultant output for one sensor of band 1. Table 3-1 gives measured cilannel-by-channel responses for the Landsat-4 system. Tables 3-2 through 3-6 present data from which a comparison with other MSS sensors can be made.

3.4 COMPARISON WITH PREVIOUS LANDSATS

Both protoflight and flight MSS systems were studied. The spectral characterization results presented in Tables 3-2 through 3-6 are summarized as follows:

$$
\begin{aligned}
& \text { OPMGINAL PAGE is } \\
& \text { OF POOR QUALTTY }
\end{aligned}
$$

Figure 3-1. Relative Spectral Response for an MSS Sensor

ORIGINAL PAGE is
Of POOR QUALITY
Table 3-1
MSS Optical Filter Specification

Band	Bandedge (nm) Half Power Points		Band- Width	Slope Interval (nm) From 5 to 50%		Spectral Flatness (\%) Over Central 70\%	
	Lower	Upper	(nm)	Lower	Upper	Positive	Negative
1	$500+10$	$600+10$	-	<20	<40	<5.0	<5.0
2	$600+10$	$700+10$	-	<20	<45	<7.5	<7.5
3	$700+10$	$800+10$	-	<20	<50	<5.0	<5.0
4	$800+10$	$1100^{\pi}+10$	-	<35	-	<5.0	<5.0

${ }^{\text {a }}$ Upper bandedge not filter determined - Filter specification necessary fur flatness determination
Table 3-2

Scanner Channel		Bandedge (nm)		Width ${ }^{*}$ (nm)	Slope Interval (nm)		Spectral Flatness	
		Lower	Upper		Lower	Upper	Positive	Negative
Band 1	1	496	606	110	15	22	4.4	$7.1{ }^{\text {b }}$
	2	496	605	109	15	22	3.5	$5.8{ }^{\text {b }}$
	3	496	605	109	15	23	$5.6{ }^{\text {b }}$	$9.2{ }^{\text {b }}$
	4	495	604	109	15	24	$6.0^{\text {b }}$	$10.8{ }^{\text {b }}$
	5	495	603	108	14	24	$6.0{ }^{\text {b }}$	$13.1{ }^{\text {b }}$
	6	495	606	110	15	22	4.8	$7.8^{\text {b }}$
Band 2	7	603	$708^{\text {c }}$	$105^{\text {c }}$	12	19	$8.2{ }^{\text {b }}$	$17.2^{\text {b }}$
	8	602	696	94	12	16	6.4	$11.6{ }^{6}$
	9	603	696	92	12	14	6.6	$11.0{ }^{\text {b }}$
	10	603	696	94	12	18	$7.8{ }^{\text {b }}$	$11.1{ }^{\text {b }}$
	11	604	698	94	13	17	4.5	$11.7{ }^{\text {b }}$
	12	602	695	93	12	15	$8.2{ }^{\text {b }}$	$14.5{ }^{6}$
Band 3	13	700	$813{ }^{\text {b }}$	113	16	14	$13.7{ }^{\text {b }}$	$14.2{ }^{\text {b }}$
	14	701	$812^{\text {b }}$	110	16	15	$11.6{ }^{6}$	$15.7{ }^{\text {b }}$
	15	$70!$	$814{ }^{\text {b }}$	113	15	14	$12.9{ }^{\text {b }}$	$8.6{ }^{\text {b }}$
	16	702	$814{ }^{\text {b }}$	111	15	14	$7.8{ }^{\text {b }}$	$10.0{ }^{\text {b }}$
	17	701	$813^{\text {b }}$	112	15	15	$13.0{ }^{\text {b }}$	$13.0{ }^{\text {b }}$
	18	701	$812^{\text {b }}$	111	15	16	$18.5{ }^{\text {b }}$	$15.3{ }^{\text {b }}$
Band 4	19	808	1025	217	23	110	$25.5{ }^{\text {b }}$	$48.5{ }^{\text {b }}$
	20	808	1006	199	23	120	38.7 ${ }^{6}$	$62.2{ }^{\text {b }}$
	21	808	1049	241	24	94	$19.5{ }^{\text {b }}$	$44.8{ }^{\text {b }}$
	22	807	1012	205	23	117	34.9 ${ }^{\text {t }}$	$59.5{ }^{\text {b }}$
	23	807	1025	218	23	108	$31.1{ }^{4}$	$50.2{ }^{\text {b }}$
	24	807	1018	211	23	112	29.3 ${ }^{\text {b }}$	36.7 ${ }^{\text {b }}$

[^0]original page is OF POOR QUALITY
Table 3-3 Characterization of Landsal 4 MSS (Band 3

Means	Scanner	Bandedge (nm)		$\begin{gathered} \text { Width" } \\ (\mathrm{nm}) \\ \hline \end{gathered}$	Slope Interval (nm)		Spectral Flatness	
		Lower	Upper		Lower	Upper	Positive	Negative
	PF	495	605	109	15	23	$5.1{ }^{\text {b }}$	$8.9{ }^{\text {b }}$
	F	497	607	109	15	21	5.0	$11.2^{\text {b }}$
	$1{ }^{\text {c }}$	501	599	98	15	27	$7.1^{\text {b }}$	$16.1{ }^{\text {b }}$
	$1{ }^{\text {d }}$	499	597	98	15	27	$6.1{ }^{\text {b }}$	$14.6{ }^{\text {b }}$
	2	497	598	101	15	22	$5.4{ }^{\text {b }}$	$14.1{ }^{\text {b }}$
	3	497	593	96	16	22	$5.4{ }^{\text {b }}$	$19.2{ }^{\text {b }}$
	PF	0.5	1.2	0.8	0.3	1.0	1.0	2.7
	F	0.8	0.8	0.5	0.6	C 7	0.6	3.4
Standard	$1{ }^{\text {c }}$	6.5	4.1	3.5	1.6	5.6	2.4	6.4
Deviations	$1{ }^{\text {d }}$	5.3	3.0	3.5	1.8	5.4	0.4	5.8
	2	1.4	1.4	1.8	1.2	0.6	2.4	3.5
	3	3.7	2.5	3.8	3.2	3.4	1.5	7.8

bo fiver sect filer specification
${ }^{c}$ With ouclier channel included
Boxes indicate characteristics where differences between PI: or F and all previous scanners (1, 2, 3) were greater than differences betwren iwo sels
of PI: measurements.
Table 3-4
Chararterization of Landsat-4 MSS (Band 2) and Comparison

Means	Scanner	Bandedge (nm)		$\begin{aligned} & \text { Width } \\ & (\mathrm{nm}) \end{aligned}$	Slope Interval (nm)		Spectral Flatness	
		Lower	Upper		Lower	Upper	Positive	Negative
	PF ${ }^{\text {c }}$	603	698	95	12	16	7.0	$12.9{ }^{\text {b }}$
	PF ${ }^{\text {d }}$	603	696	93	12	16	6.7	$12.0{ }^{\text {b }}$
	F	603	697	94	12	15	$7.6{ }^{6}$	$11.1{ }^{6}$
	1	603	701	97	15	26	$9.0{ }^{\text {b }}$	$13.3{ }^{\text {b }}$
	$2^{\text {c }}$	607	710	103	14	30	$7.9{ }^{\text {b }}$	$18.0{ }^{\text {b }}$
	$2{ }^{\text {d }}$	6.57	710	103	14	29	$7.8^{\text {b }}$	$16.8{ }^{\text {b }}$
	3	606	705	100	14	31	7.2	$17.2^{\text {b }}$
Standard Deviations	PF ${ }^{\text {c }}$	0.7	4.7	4.8	0.5	1.9	1.4	2.5
	PF ${ }^{\text {d }}$	0.8	0.8	0.6	0.5	1.4	1.5	1.4
	F	0.4	0.6	0.5	0.4	v. 9	1.2	3.0
	1	3.5	2.2	2.8	1.7	3.4	3.4	2.8
	$2{ }^{\text {c }}$	0.6	0.8	1.0	1.2	\cdots	1.1	4.5
	$2{ }^{\text {d }}$	0.6	0.9	1.1	1.2		1.2	3.8
	3	0.9	1.2	0.8	0.8	26	2.0	4.8

[^1]Boxes indicate characteristics where differc ces between PF; or F and all previous scanners ($1,2,3$) were greater than differences between two sets
Table 3-5
Characterization of Landsat-4 MSS (Band 3) and Comparison

Means	Scanner	Bandedge (nm)		$\begin{aligned} & \text { Widthas } \\ & (\mathrm{nm}) \end{aligned}$	Slope Interval (nm)		Spectral Flatness	
		Lower	Upper		Lower	Upper	Positive	Negative
	PF	701		112	15	15	$13.2{ }^{\text {b }}$	$12.8{ }^{\text {b }}$
	F	704	$814^{\text {b }}$	110	16	14	$12.6{ }^{\text {b }}$	$9.6{ }^{\text {b }}$
	1	694	800	105	19	35	$7.2^{\text {b }}$	$7.4{ }^{\text {b }}$
	2	697	802	106	16	34	$8.4{ }^{\text {b }}$	$7.9{ }^{\text {b }}$
	3	693	793	100	19	32	$9.9{ }^{\text {b }}$	$22.2{ }^{\text {b }}$
Standard Deviations	PF	0.7	0.9	1.1	0.3	0.5	$2.9{ }^{\text {c }}$	$2.9{ }^{\text {c }}$
	F	0.3	0.2	0.3	1.0	0.3	$1.1{ }^{\text {c }}$	$0.8{ }^{\text {c }}$
	1	0.9	1.0	0.9	2.0	3.8	3.2	2.9
	2	1.1	2.3	2.1	0.6	2.7	3.0	1.9
	3	1.8	1.6	0.8	1.4	1.1	2.7	3.4

- ivu filter specification
biails to meet filter specification
${ }^{\text {c PIF, F }}$ diference exceeds difference between two sets of PF measurements
Boxes indicate charact
of PF measurements.
Table 3-6
Characterization of Landsat-4 MSS (Rand 4) and Comparison

Means	Scanner	Bandedge (nm)		$\begin{aligned} & \text { Width" } \\ & (\mathrm{nm}) \end{aligned}$	Slope Interval (mm)		Spectral Flatness	
		Lower	Upper		Lower	Pper	Positive	Negative
	PF	808	1023	215	23	110	$29.8{ }^{\text {b }}$	$53.7^{\text {b }}$
	F	809	1036	227	23	101	$23.0{ }^{\text {b }}$	$50.8{ }^{\text {b }}$
	i	810	989	179	22	120	$46.0^{\text {b }}$	$4.5{ }^{\text {b }}$
	2	807	990	183	23	118	$45.4{ }^{\text {b }}$	\% $5.9{ }^{\text {b }}$
	3	812^{6}	979	167	24	108	$56.4{ }^{\text {b }}$	$8.1 .7^{6}$
Standard Deviations	PF	0.5	14.9	14.6	0.2	9.2	6.8	$4.8{ }^{\text {c }}$
	F	0.1	12.5	12.5	0.4	9.9	6.0	$4.1{ }^{\text {c }}$
	1	1.2	3.5	3.7	2.1	7.2	2.3	3.1
	2	2.0	4.0	5.3	0.8	2.7	4.7	1.1
	3	0.9	7.9	7.6	1.0	3.0	11.7	2.4

${ }^{9}$ No filler specilication
blaiks to meet filter specification
${ }^{\text {c PFF }}$, F difference exceeds difference bet ween two sets of PF: measurements.
Boxes indicate ch icteristws where differences between PF or F and all previcus scanners $(1,2,3)$ were greatet than differences between two sets of Pr measurements.

Band 1: No outliers, relative spectral responses meet all filter specifications except flatness (Table 3-2).

Band 2: PF channel 7 upper bandedge is 12 nm higher than the average of the other PF channels and is rejectable as an outlier; responses meet all filter specifications except flatness (Table 3-3).

Band 3: No outliers, all channels are slightly wide (2 to 4 nm) to the long wavelength side, otherwise responses meet filter specifications.

Band 4: No outliers, but upper bandedge varies by as much as 42 nm , resulting in width variations of up to 20 percent: system response upper half-power points below filter specifications due to silicon photodiode detector response; and response flatness considerably below filter specifications (Table 3-5).

3.5 CONSLUSIONS

The two Landsat-4 scanners are nearly ident'cal in mean spectral response; however, some difference from previous MSS systems was found. Principal differences between the spectral responses of the Landsat-4 scanners and previous systems are itemized as follows:

- A mean upper bandedge in the green band of 606 nm was observed for Landsat 4 as compared with previous means of 593 to 598 nm .
- An average upper bandedge of 697 nm in the red band was observed for Landsat 4 as compared with previous averages of 701 to $710 \mathrm{n} \mathbf{n t}$.
- An average bandpass for the first near-infrared band of 702 to $81+\mathrm{nm}$ was found for Landsat 4 compared with a range of 593 to 793 nm to 697 to 802 nm for previous scanners.

These differences resulted in the simulated Landsat-4 scahner outputs being 3 to 10 percent lower in the red band and 3 to 11 percent higher in the lirst near-infrared band than previous scanners when viewing a soybean target. Dtherwise, outputs from soil and soybean targets were little
affected. The Landsat-4 scanners generally appear to be more uniform in both charnel-to-channel and band-to-band responses than previous sianners.

PRELAUNCH MSS SENSOR RADIOMETRIC CHAK ICTERIZATION

4.1 INTRODUCTION

This section introduces the reader to the calibration procedures perfurmed on the Landsal-4 M:S instrument during prelaunch activities.

Radiometric calibration converts output voltage from the MSS photodetectors into digital values that represent input radiance. This is accomplished by using the voltage-radiance charact-ristics of each detector. Detector characteristics are monitored and updated using an internal calibration system. The MSS internal calibration system consists of a wedge density filter between a calibration lamp and the detectors. The internal calibration lamp, which is used as a reference, is calibrated prelaunch using a GSFC $76-\mathrm{cm}$ integrating sphere. This integrating sphere is the primary standaid for the radiometric calitration of the MSS. The objective of the prelaunch MSS radiometric calibration using this sphere is to establish the reference light levels of the internal calibrator lamp for all channeis (detectors) in the four bands.

There are several radiance levels (illumination intensities) associated with the integrating sphere, which corresponds to different numbers of lamps, that are turned on within it. In a typical calibration experiment in the laboratory, the MSS is exposed to different intensities (radiances) from the sphere. For each output radiance level, R_{j}, cit $_{i}$ the integrating sphere, the MSS registers a digital count, V_{i}, that is obtained as an average over several mirror sweeps. During retrace motion of alternate scans (Figure 4-1), the shutter wheel within the scan mirror assembly is used to transmit light from the internal lamp through a graded density fiiter. This produces a wedge-shaped signal from the inter:al lamp. Becsuse of hysteresis effects, detector readings for any given word location on the wedge will be different, corresponding to different radiance levels from the integrating sphere. Figure 4-2 conceptually shows how detector readings, Q_{ij}, corresponding to internal lamp wedge word location. i .

ORTOMAL PAGE is
OF PC.R Zíality

ORIGNAL PAGE IS of poor qualtr
Len
for different integrating sphere radiance levels, j , may change due to hysteresis. Similarly, the digital readings V_{j} for the sphere radiance levels R_{j} are also affected by hysteresis.

During calibration analysis in the laboratory, corrections to hysteresis effects are made to V_{j} 's to obtain adjusted, digital values. VA, for each radiance level R_{j}. A linear transformation between VA, and R_{j} is then assumed. Using the coefficients of this transformation (which are evaluated), the radiance, R_{1}, at the internal lamp wedge word locations is calculated. Radiance values corresponding to six preselected word locations on this wedge are then used to compute the gain and offset of the detector. Details of this procedure are presented as six distinct steps in the following section.

4.2 CALIBRATION PROCEDURE

The entire calibration process involves the following steps for each detector of each band.

STEP 1: Determination of Equivalent Radiance of the Integrating Sphere

The integrating sphere was calibrated at CSFC using a grating spectroradiometer, by comparing the output from the sphere with that of d standard of spectral irradiance (Reference HS 248-5660-3-1). The integrating sphere uses tungsten lamps that are not spectrally flat. The equivalent spectraliy flat radiance of the integrating sphere must therefore be determined independently for each detector within a band. The equivalent spectrally flat radiance of the integrating sphere for any detector is determined from

$$
\begin{equation*}
\mathrm{R}_{\mathrm{jk}}=\mathrm{BW}_{\mathrm{k}} \frac{\int_{\mathrm{RW}_{\mathrm{i}} \mathrm{RSR}_{k} \mathrm{~d}_{\lambda}}}{\int_{\mathrm{RSR}_{\mathrm{k}} \mathrm{~d}_{\lambda}}} \tag{4-1}
\end{equation*}
$$

OF POON NUALITY

where

$\mathbf{R}_{j k}=$ equivalent spectrally flat emittance for integraing sphere level $;\left(\mathrm{mW} / \mathrm{cm}^{2}\right.$ sr) for detector k
$B W_{k}=$ bandwidth of detector k at 50 percent of peak value
$R W_{1}=$ spectral radiant emittance of the integrating sphere for level $j\left(\mathrm{~mW} / \mathrm{cm}^{2} \mu \mathrm{sr}\right) . \mathrm{A}$ plot of RW_{j} versus wavelength is shown in Figure 4-3.
$\mathrm{RSR}_{k}=$ relative spectral response of detector k (dimensionless)

STEP 2: Selection of Calibration Wedge Words for Each Band

During the retrace interval of alternate scans, a shutter wheel closes off the optical system's view of the scene. At this time, light from an internal lamp is projected into the sensor through a graded density filter that resides on the shutter wheel. This produces a unique wedge-shaped video data stream at each detector. The detector responses at six word locations on this calibration wedge are selected to represent sample video data from the intemal lamp. These word counts are referenced to the first sample on the leading edge greate: than level 32 (see Figure 4-4). The particular word locations are selected on the basis of the following factors:

- Temperature Effects-Detector gains and offset are a function of temperature.
- Detector Aging-Previous detectors have experienced long-term drift effects, particularly for Landsat 1, channel 13.
- Hysteresis-Detector gain changes as a function of incident radiance.
- Vacuum-Detector gain and offset shift somewhat when the MSS is introduced to the vacuum conditions of space.

STEP 3: Adjustment of Integrating Sphere Video Levels

As the system is run through a sequence of radiance levels R_{j} from the sphere, average video digital counts V_{i} worresponding to a radiance level R_{j} (as seen in the scene) must be adjusted to
ORIGINAL PAGE is
OF POOR QUALITY

Figure 4-3. Speciral Radiant Emittance Plot for $76-\mathrm{cm}$ Integrating Sphere

ORIGNAL PAGE IS OF POOR QUALITY

compensate for the effects of detector hysteresis. If $Q_{i j}$ is the calibration wedge digital count for the ith calibration word location, corresponding to the jth radiancs ievel from the sphere, then

$$
\begin{equation*}
\bar{Q}_{i}=\frac{1}{n} \sum_{j=1}^{n} Q_{i j} \tag{4-2}
\end{equation*}
$$

is the average wedge digital count for wedge word location i. Assuming a linear relationship between \bar{Q}_{i} and $Q_{i j}$,

$$
\begin{equation*}
Q_{i v}=a_{j}+b_{j} \bar{Q}_{i} \tag{4-3}
\end{equation*}
$$

It should be noted that GE used 14 word locations $(i=1 \ldots 14)$ on the internal lamp wedge and 9 radiance levels $(j=1 \ldots 9)$ from the integrating sphere.

Summing overall word locations (i) for a given level (j) produces

$$
\begin{equation*}
\sum_{j=1}^{m} Q_{i j}=m a_{j}+b_{j} \sum_{i=1}^{m} \bar{Q}_{i} \tag{4-4}
\end{equation*}
$$

Equation (4-3), when multiplied by $\overline{\mathrm{Q}}_{4}$ and summed over i, yields

$$
\begin{equation*}
\sum_{i=1}^{m} \bar{Q}_{i} Q_{i j}=a_{j} \sum_{i=1}^{m} \bar{Q}_{i}+b_{j} \sum_{i=1}^{m}\left(\bar{Q}_{i}\right)^{2} \tag{4-5}
\end{equation*}
$$

Equations (4-4) and (4-5) are solved simultaneously for a_{j} and b_{j}.
This produces

$$
\begin{equation*}
a_{j}=\left[\sum_{i=1}^{m} \bar{Q}_{i}^{2} \sum_{i=1}^{m} Q_{i j}-\sum_{i=1}^{m} \bar{Q}_{i} \sum_{i=1}^{m} \bar{Q}_{i} Q_{i j}\right] / D_{i} \tag{4-6}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j}=\left[m \sum_{i=1}^{m} \bar{Q}_{i} Q_{i j}-\sum_{i=1}^{m} \bar{Q}_{i} \sum_{i=1}^{m} Q_{i j}\right] / D_{i} \tag{4-7}
\end{equation*}
$$

jhisinal pace b
 OF POOR QUALITY

where

$$
\begin{equation*}
D_{1} \quad D_{1}=m \sum_{i=1}^{m} \bar{\theta}_{1}^{2}-\left(\sum_{m=1}^{m} \bar{Q}_{1}\right)^{2} \tag{4+5}
\end{equation*}
$$

It should be noted that since the coetficients a_{j} and b_{1} connect individual $Q_{i 4}$'s with the average \bar{Q}_{i}, b_{j} should be near unity and a_{j}, should be very small. The coefficients a_{j} and b_{j} can now be used to adjust the integrating sphere video digital values $V_{\text {; }}$ to correct tor hysteresis effects.

$$
v_{j}=a_{j}+b_{j} V A_{j}
$$

STEP 4: Equivalent Radiance (R_{f}) Values at Wedge Word Locations

Assume that a linear relationship exists between adjusted video digital count VA, and the corresponding radiance level R_{1} of the sphere. Or.

$$
\begin{equation*}
V A_{1}=p+\varphi R_{1} \tag{4-9}
\end{equation*}
$$

The values p and q are solved by a least-squares fit (as before for a_{j} and b_{j}) of the data sequence over j . Assumung that these detector transter coefficients apply to the calibration lamp, an equivalent calibration lamp radiance can be calculated for each of it wedge-word location i from

$$
\begin{equation*}
R_{1}=\frac{\bar{\Phi}_{1}-p}{q} \tag{+-10}
\end{equation*}
$$

STEP: Cahbration Cosficients C_{1} and D_{1}
From the $1+$ radiance values computed in equation $(+-10)$ six radance values corresponding to prenously presented word locations are chosen. and a new linear relationship is assumed between these six radiance values and the corresponding average wedge digutal counts $\bar{Q}_{\text {, }}$

$$
\begin{equation*}
\bar{Q}_{i}=\alpha+\beta R_{1} \quad \text { OF POOR QUALITY } \tag{4-11}
\end{equation*}
$$

ORIGINAL PAGE IS
where

$$
\begin{array}{ll}
\alpha=\sum_{i=1}^{6} \bar{Q}_{i} C_{i} & \text { st the offset } \\
\beta=\sum_{i=1}^{6} \bar{Q}_{i} D_{i} & \text { is the gain }
\end{array}
$$

where

$$
\begin{aligned}
& C_{1}=\left(\sum_{i=1}^{6} R_{1}^{2}-R_{i} \sum_{i=1}^{6} R_{1}\right) / K_{1} \\
& D_{1}=\left(6 R_{1}-\sum_{i=1}^{6} R_{1}\right) / K_{1} \\
& K_{1}=6 \sum_{i=1}^{6} R_{1}^{2}-\left(\sum_{i=1}^{6} R_{i}\right)^{2}
\end{aligned}
$$

These are the calibration coefficients.

It should be noted that all the foregoing computations are performed to produce six C_{i} 's and D_{i} 's for each channel of every band (Figure 4-5).

STEP 6: Sensor Transformation Equation

Since the six detectors of a given band have different gains and offsets, the detectors may saturate at different input radiance levels. Similarly, zero digital values may result at different low-input radiance for different detectors. This will cause striping. To eliminate striping, each detector response for the set of six detectors in a band is mapped to a common band calibration curve. To achieve this, first identify the detector that saturates first. Let $R_{\text {max }}$ be the radiance value slightly

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4-5. Ba:d Nonnalization of MSS Channel Gains and Offset

ORiginal page is OF: POOR QUALITY

lower than the lowest incident radiance that saturates this detector. Let $\mathrm{R}_{\mathrm{m} \text { in }}$ be the radiance siightly higher (chosen from experience to be 10 percent higher) than the highest value of input radiance that produces zero output from one detector. Let $\mathrm{V}_{\max }$ (typicaily 127 for the logarithmically "ompressed modes for bands 1,2 , and 3) be the maximum digita' count from the detectors (after decompression). Let R be apparent input scene radiance and V_{0} be the actual observed video digital count corresponding to R. The?, the corrected video digital count V_{c} corresk ading to input R is given by

$$
\begin{equation*}
V_{c}=\frac{V_{\max }}{R_{\max }-R_{m m}}\left(R-R_{\min }\right) \tag{4-12}
\end{equation*}
$$

From equation (+-11), V_{0} and R are related by the equation

$$
V_{0}=\alpha+\beta R
$$

or

$$
\begin{equation*}
R=\frac{1}{\beta}\left(V_{0}-\alpha\right) \tag{+13}
\end{equation*}
$$

Substituting in equation (4-12).

$$
\begin{equation*}
V_{c}=\frac{V_{\max }}{R_{\max }-R_{\min }}\left(\frac{V_{0}-\alpha}{\beta}-R_{\min }\right) \tag{4-14}
\end{equation*}
$$

Equation ($4-14$) maps all six detectors to one staight line defined by the points $\left(R_{m i n}, 0\right)$ and $\left(R_{\text {max }}, V_{\text {max }}\right)$ in the (R, V) plane. Equation ($+-1,4$) can be rearranged to read

$$
\begin{equation*}
V_{c}=\frac{V_{m a x}}{\beta^{\prime}}\left(V_{0}-\alpha^{\prime}\right) \tag{4-15}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha^{\prime}=\alpha+\beta R_{\min } \tag{4-16}\\
& \beta^{\prime}=\left(R_{\max }-\mathrm{K}_{\min }\right) \beta \tag{4-17}
\end{align*}
$$

Since

$$
\alpha=\sum_{i=1}^{6} c_{i} \bar{Q}_{i}
$$

and

$$
\beta=\sum_{i=1}^{6} D_{i} \bar{Q}_{i}
$$

it can be written

$$
\begin{aligned}
& \alpha^{\prime}=\sum_{i=1}^{6} C_{i} \bar{Q}_{i}+R_{\min } \sum_{i=1}^{6} D_{i} \bar{Q}_{i} \\
& \beta^{\prime}=\left(R_{\max }-R_{\min }\right) \sum_{i=1}^{6} D_{i} \bar{Q}_{i}
\end{aligned}
$$

New regression coefficients can be defined as

$$
\begin{align*}
& C_{i}^{\prime}=C_{i}+R_{\min } D_{i} \tag{4-18}\\
& D_{i}^{\prime}=\left(R_{\max }-R_{\min }\right) D_{i} \tag{4-19}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha^{\prime}=\sum C_{i}^{\prime} \bar{Q}_{i} \tag{4-20}
\end{equation*}
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

$$
\begin{equation*}
\sigma^{\prime}=\sum D_{i}^{\prime} \bar{Q}_{i} \tag{4-21}
\end{equation*}
$$

These are medified regession coefficients used postiaunch.

It should be noted that the scanner subsystem contains two lamps: primary and secondary. Calibration procedures described are performed for both the lamps. However, during flight operations, the secondary lamp is used only when major problems with the primary lamp are observed.

For bands 1 through 3 , commutated samples of video are normally directed to a logarithmic signal compression amplifier and then to the encoder. No signal compression is performed on band 4. A high-gain mode can ?lso be applied to band 1 and 2 voltages before analog-to-digital conversion. Calibration coefficients, C_{i}^{\prime} and D_{i}^{\prime}, are therefore obtained for the low-gain compressed mode for bands 1 through 3, linear quantized mode for band 4, and high-gain compressed mode for bands 1 and 2.

SECTION 5

POSTL.AUNCH MSS R.ADIOMETRIC PROCESSING

S.1 INTRODUCTION

Radiometric correctica consists of a prelaunch and a postlaunch part. in the prelaunch part. as described in Section t, the internal calit ration lamps are calibrated using an integrating sphere with known radiance values. Regression coef ivents (C_{1}^{\prime} and D_{1}^{\prime}) are derived that are used in computing postlaunch voltaye (digatal counts) radiance curves. Postlaunch radiometric processung involves determang the video count-radiance curves for each detector using the calibration lamp data either alone or in combination with the scene conte:t data. The final result is a Radiometric Lookup Table (RLUT) that allows a radiance value to be assigned to each detector reading. Computing and applying the RLUT values to produce mazery constitute the MSS radiometnc corren tion.

The steps in the process are shown in Figure 5-1. The detectors are exposed to the memal calibration lamperery other sweep. Durmg each calibratoon, the internal lamp radiance is moditied by a neutral density filter producing a varation from full radance to aero. At six prechosen calibration wedge word locations, the defector output is sampled. The digatal counts combined with prelaunch regression coeffictents determane the slope (i.e.. sam) and bies (offse!) icr a linear detector output versus ratiance relatomshap. This calibratoon is performed for each segment of a seene at a time. Note that di present it has been decided that each MSS seene will be divided into four segments for salibratom procedares. The internal calitration could be used drectls to produce RLUT's. However, there will be some residhal error in the internal calibration procedure that will result in residual stripug. An additional calibration, reterred to as seene content or histogram calibration, is appled to mprove the RLL'Ts. This seme segment cahbration methedology difien from the scan-by-ian calitrathon soheme used for Landsats 2 and 3

5.2 RADIOMETRIC CORRECTIONS

During each forward scan of the mirror (in-light), approximately 3000 6-bit samples are taken from each detector. In every other scan during the retrace part of the mirror, six calibration wedge values (from the internal lamp) for each detector are measured. The detector output for bands 1,2 , and 3 is normally compressed (logarithmically amplified) before sampling. During ground processing, the 6 -bit digital samples are decompressed to 7 bits (0 to 127) using decompression tables established during the prelaunch calibratıon. Band 4 is always 6 -bit linear and is expanded to 7 bits for display during ground processing.

Radiometric correction is achieved in two steps: (1) radiometric correction using calibration wedge data only and (2) radiometric correction using scene content.

5.2.1 RADIOMETRIC CORRECTION USING CALIBRATION WEDGE DATA

First, the scenes are divided into either one, two, four, or eight (usually four) image segments per scene. For a given segment, each of the six calibration wedge values for each detector is averaged over the segment. Usirg these average values and the prelaunch linear regression coefficients C_{i} and D_{i}^{\prime}, initial values of the gain G and offset B for each detector are calculated:

$$
\begin{align*}
& G=\sum_{i=1}^{6} D_{i}^{\prime} \bar{V}_{i} \tag{5-1}\\
& B=\sum_{i=1}^{6} C_{i}^{\prime} \bar{V}_{i} \tag{5-2}
\end{align*}
$$

where $\overline{\mathrm{V}}_{\mathrm{i}}$ is the average value of alibration wedge data. An RLUT that converts output digital samples to estimated radiance samples (for an N-level display) is then generated:

$$
\begin{equation*}
\text { . } \operatorname{RLUT}(\mathrm{i})=(\mathrm{i}-1-\mathrm{B}) / \mathrm{G} \text { for } 1 \leqslant \mathrm{i} \leqslant \mathrm{~N} \tag{5-3}
\end{equation*}
$$

and rounded off to the nearest integer. Here $N=127$. The lookup table must now be truncated for the following reason: It may occur that the detector's saturation output sample value coransponds to a radiance value less than 127. Then, the imagery will appear striped in high-radiance areas. Similarly, it may occur that some detector's zero output sample value may correspond to a radiance value greater than zero. In that case, the imagery will appear striped in low-radiance areas. To avoid this striping, the lookup table must be truncated to display the imagery over a common radiance range. Some residual striping will still remain due to nonlinearities, quantization, hysteresis, or calibration source variation, etc. The lookup table can $n_{C} \vee$ be adjusted using scene content on the following assumption: over a "large enough" segment of the imagery, each detector statistically sees the same distribution of radiance.

5.2.2 RADIOMETRIC CORRECTION USING SCENE CONTENT

For a given image segment, the observed statistics of a detector's digital output are contained in the sample histogram $\mathrm{Vh}(\mathrm{i}, \mathrm{j})$. This histogram is the number of occurrences of the digital sample (i-1) for the jth detector over the entire image segment. It has been suggested by GE that it is not necessary to use every sample from the detector to generate this histogram. In a test case with Landsat-3 data, GE found that no performance degradation was noted even for histograms generated from as few as every sixteenth sample. This sample reduction for histogram generation has obvious benefits for high-speed processing.

Using the lookup table discussed above (equation (5-3)), an estimated input radiance histogram rh (i, j) can be generated for each detector in a band. The histograms for the detectors are again truncated to a common radiance range. The next step is to compute an average radiance histogram for a band from the input radiance histograms of the six detectors in the band

$$
\begin{equation*}
\overline{\mathrm{h}}(\mathrm{i})=\frac{1}{6} \sum_{\mathrm{j}=1}^{6} \mathrm{rh}(\mathrm{i} . \mathrm{J}) \tag{5-4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { Of POOR QUALITY }
\end{aligned}
$$

To remove striping. the following algorithm can be used:
3. Equalization of Average and Standard Deviation-In the following. the indexe 1 and j will be suppressed, remembering that calculations for the new gain and effiset refer to an individual detector. Let
$r=$ truncated input radiance histogram for the jth detector
$z=$ average of the six histograms for a band as defined in equation ($5-4$)

Now demand that

$$
\begin{equation*}
z=g * r+b \tag{5-5}
\end{equation*}
$$

Parameters g and b are obtained by equating the mean and standard deviation of both sides of this equation. Therefore,

$$
\begin{align*}
& \operatorname{Avg}(z)=\operatorname{Avg}[g * r+b]=g *[\operatorname{Avg}(r)]+b \tag{5-6}\\
& V \sin (z)=V \sin \{r+b\}=g^{2} \cdot \operatorname{Var}(r) \tag{5.7}
\end{align*}
$$

or

$$
\begin{equation*}
\operatorname{Std}(z)=z * \operatorname{Std}(r) \tag{5-8}
\end{equation*}
$$

so that

$$
\begin{equation*}
g=\operatorname{Std}(z) / \operatorname{Std}(r) \tag{5.0}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\operatorname{Avg}(2)-g \operatorname{Avg}(5) \tag{5-10}
\end{equation*}
$$

Here, Avg. Var, and Std refer to average, variance, and standard deviation.

The calculated values of g and b can now be used to compute the new gain G^{\prime} and offset B^{\prime} for the j th detector. The radiance values r corresponding to digital outputs from the jth detector are obtained from

$$
\begin{equation*}
r=(V-B) / G \tag{5-11}
\end{equation*}
$$

where G and B have been calculated from the calibration wedge data and the regression coefficients C_{1}^{\prime} and D_{1}^{\prime}. Now

$$
\begin{align*}
z=g * r+b & =g *[(V-B) / G]+b \\
z & =\left(V-B^{\prime}\right) / G^{\prime} \tag{5-12}
\end{align*}
$$

where G^{\prime} and B^{\prime} are the scene-adjusted gain and offset for the jth detector given by

$$
\begin{align*}
& G^{\prime}=G / g \tag{5-13}\\
& B^{\prime}=B-b * G^{\prime}
\end{align*}
$$

With this new gain and offset, the procedure of deriving o lookup table and obtaining truncated, estimated input radiance can be iterated. Because of integer lookup-table roundoff and common radiance range truncation, the average and standard deviations of the updated estimated input radiance histograms do not generally equal that of the origi: \downarrow average histogram. The destriping can be improved by iterating (as shown in the schematic diagram of Figure 5-2) the scene content correction.

For illustration purposes, calculation for Avg. Var, and Std tor r will now be shown. Let
$r=r h(i, j)=$ truncated estimated input radiance for the jth detector

Then
sum $(j)=$ number of pixel samples from the $ر$ th detector
ORIGINAL PAGE IS
OF POOR QUALITY

Figure 5-2. Flow Diagram of Scene Content Correction Processing

$$
\begin{gathered}
\operatorname{sum}(j)=\sum_{i=1}^{N} \operatorname{rh}(i, j) \\
\operatorname{Avg}(j)=\operatorname{Avg}(r)=\sum_{j=1}^{N}(i-1) \operatorname{rh}(i, j) / \operatorname{Sum}(j) \\
\operatorname{Var}(j)=\operatorname{Var}(r)=\sum_{i=1}^{N}[i-1-\operatorname{Avg}(j)]^{2} \operatorname{rh}(i, j) / \operatorname{Sum}(j) \\
\operatorname{Std}(j)=\operatorname{Std}(r)=\sqrt{\operatorname{Var}(j)}
\end{gathered}
$$

b. Image Segment Blending-It has been previously mentioned that each scene is divided into several segments. When vewing the displayed imagery, there should be no evident radiance level discontinuities between segments (i.e., the imagery should blend evenly with those of the adjacent image segments). To blend the imagery from adjacent image segments, each segment is divided into subsegments, and lookup tables for these subsegments are computed ty interpolating the gains and offsets between image segments. The interpolation uses a weighted average of the segment gains and biases to compute gains and biases for the boundary subsegments. An example of interpolating gain and bias in the case of three subsegments per processing segment is shown in Figure 5-3.

5.3 DETECTOR GAIN AND OFFSET UPDATE

For any given band, the gains and offsets of detectors can have too much of a spread between them. A method is then needed to adjust the calibration equations to achieve reduced striping. The method used introduces multiplicative and additive modifiers (M and A) in the equation for the corrected digital value derived in subsection 4.2. In subsection 4.2 . the coreected digital value has been shown to be (equation (4-15))

$$
V_{c}=\frac{V_{m a x}}{\beta^{\prime}}\left(V_{0}-\alpha^{\prime}\right)
$$

EXAMPLE OF SEGMENT BLENDING WITH NUMBER OF SEGMENTS = 4
MUABER OF SUBSEGMENTS/SEGMENT $=3$
Figure 5-3. Scene Segment Blending
where β^{\prime} and α^{\prime} are gain and offset, and V_{o} is the uncorrected digital value. $V_{\text {max }}=127$. The modifiers M and A aie introduced in the foregoing equation to make it read as

$$
\begin{equation*}
V_{c}^{\prime}=\frac{V_{\max }}{M \beta^{\prime}}\left(V_{0}-\alpha^{\prime}\right)-A=\frac{V_{c}}{M}-A \tag{,-14}
\end{equation*}
$$

To find M and A, a detector's mean radiance (over a flat radiance region) is plotted against the band mean radiance for several radiance levels. Linear regression yields a slope μ and an offset α for each detector mean radiance $\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {det }}$ as a function of the band mean radiance $\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {band }}$

$$
\begin{equation*}
\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\mathrm{det}}=\mu\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {band }}+\alpha \tag{5-15}
\end{equation*}
$$

The goal is to have the detectors in the band calibrated so that they ail yield the band mican value when exposed to a flat radiance level. Therefore, the adjusted radiance, $\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\mathrm{det}}^{\prime}$, is given by

$$
\begin{equation*}
\left(\bar{V}_{c}\right)_{\text {dot }}^{\prime}=\left(\bar{V}_{c}\right)_{\text {baad }}=\frac{\left(\bar{V}_{c}\right)_{\text {det }}-\alpha}{\mu}=\frac{\left(\bar{V}_{c}\right)_{\text {det }}}{\mu}-\frac{\alpha}{\mu} \tag{5-16}
\end{equation*}
$$

Comparing this equation with equation (5-14), it can be seen that

$$
M=\mu \text { and } k=\frac{\alpha}{\mu}
$$

The calculated values of M and A are stored in a file. By using these modifiers, the corrected digital count for each detector is $\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {set }}^{\prime}$. If, at a later time, significant striping occurs, then the \mathbf{M} and A for the detector wiil have to be updated by iterating the above procedure. For this second time, $\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {det }}^{\prime}$ acts as the old (before correction by M and A$)\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\text {det }}$, and it can be written for the second iteration

$$
\begin{equation*}
\left(\bar{V}_{c}\right)_{d e t}^{\prime \prime}=\frac{\left(\bar{V}_{c}\right)_{d e t}^{\prime}}{\mu^{\prime}}-\frac{\alpha^{\prime}}{\mu^{\prime}} \tag{5-17}
\end{equation*}
$$

ORIGNAL PACE is OF POOR QUALITY

where μ^{\prime} and α^{\prime} are the new slope and oif,et. μ^{\prime} and α^{\prime} can again be determined by regression analysis as before, and the updated M^{\prime} and A^{\prime} can be shown to be

$$
\begin{aligned}
& M^{\prime}=\mu^{\prime} M \\
& A^{\prime}=\frac{A}{\mu^{\prime}}+\frac{\alpha^{\prime}}{\mu^{\prime}}
\end{aligned}
$$

In general, it can be shown that for subsequent iterations

$$
\begin{aligned}
& M_{i+1}=\mu_{i+1} M_{1} \\
& A_{i+1}=\frac{A_{1}}{\mu_{i+1}}+\frac{\alpha_{i+1}}{\mu_{i+1}}
\end{aligned}
$$

This update is intended as a long-term improvement. In contrast, scene content correctin r_{2} relates only to a specific scent segment. Ptesumably updating M and A will remove detector response changes before the scene content correction.

$5.4 \mathrm{~K}_{\text {max }}$ AND $\mathrm{R}_{\text {min }}$ UPDATE

The modifiers M and A can also be used to update the values of $R_{m a x}$ and $R_{m \text { in }}$ discussed in subsection 4.2, equation ($4-12$). Using modifiers M and A , the corrected digital value as been shown to be

$$
\begin{equation*}
V_{c}^{\prime}=\frac{V_{\max }}{M \beta^{\prime}}\left(V_{0}-\alpha^{\prime}\right)-A \tag{5-18}
\end{equation*}
$$

If $R_{\text {max }}^{\prime}$ and $R_{\text {min }}^{\prime}$ are the adjusted cutoff vaiues of the radiances, then analogous to equation (4-12) can be written

$$
\begin{equation*}
V_{c}^{\prime}=\frac{V_{\operatorname{tax}}\left(R-R_{\min }^{\prime}\right)}{R_{\max }^{\prime}-R_{\min }^{\prime}} \tag{5-15}
\end{equation*}
$$

From equation (+-13).

ORIGNAL PAGE is OF POOR QUALITY

$$
R=\frac{V_{0}-\alpha}{\beta}
$$

It should be noted that V_{0} is the uncorrected digital count and β and α are the uncorrected gain and offset. Substituting these in equation (5-19) yields

$$
\begin{equation*}
V_{c}^{\prime}=\frac{V_{m a x}\left(V_{t}-\alpha-\beta R_{m a n}^{\prime}\right)}{\beta\left(R_{m a x}^{\prime}-R_{m m x}^{\prime}\right)} \tag{5-20}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \alpha^{\prime}=\alpha+\beta R_{m \operatorname{ma}} \\
& \beta^{\prime}=\left(R_{m a x}-K_{m i n}\right) \beta
\end{aligned}
$$

Substituting for α and β from this equation in equation (5-20) yields

$$
V_{c}^{\prime}=\frac{V_{\text {max }}\left(V_{0}-\alpha^{\prime}\right)}{\beta^{\prime}\left(\frac{R_{\text {max }}^{\prime}-R_{\text {min }}^{\prime}}{R_{\text {max }}-R_{\text {min }}}\right)}-V_{\text {max }} \frac{R_{\min }^{\prime}-R_{\text {min }}}{R_{\text {max }}^{\prime}-R_{\text {min }}^{\prime}}
$$

Comparing witt. equation (5-18), it can be written

$$
\begin{aligned}
& M=\frac{R_{m a x}^{\prime}-R_{m i n}^{\prime}}{R_{m a x}-R_{m m}} \\
& A=V_{m a x}\left(\frac{R_{m m n}^{\prime}-R_{m m}}{R_{m a x}^{\prime}-R_{m m}^{\prime}}\right)
\end{aligned}
$$

Knowing M and $A, R_{\text {max }}^{\prime}$ and $R_{\text {min }}^{\prime}$ can now be solved. This process can be iterated just as M and A are updated througn an iterative process.

SECTION 6

LANDSAT-4 IMAGE PROCESSING DATA

6.1 IMAGE PROCESSING PARAMETER FILES

Data to be discussed in this section include all parameters used in the MSS Image Processing System (MIPS) and carried in either long- or short-term files. Some of these data are unique to the radiometric response of the sensor. Others are required to gain a more complete understanding of the total MSS image processing scheme used by the Landsat-4 ground data production system.

6.2 SHORT-TERM PARAMETER FILE

The first data set is labeled "Active Detector Status." These data (refer to Table 6-1) carry the nominal calibration values used for MSS radiometry for eack sensor. Furthermore, data have been presented for each mode of sensor operation using both the primary calibration lamp (lamp A) and the secondary lamp (lamp B).

Reference to the table can best be illustrated by example. The top rcw of the table contains six nominal calibration data values for each detector of band 1 when used in the high-gain, linear mode of operation while viewing lamp A. It should be noted, for example, that the numbers can be rearranged as follows:

Detector 1	42	40	38	35	2	2
Detector 2	42	39	38	35	2	2
Detector 3	43	41	39	37	2	2
Detector 4	43	41	38	36	2	2
Detector 5	41	39	37	33	2	2
Detecior 6	42	40	38	36	2	2

During radiometric data processing, these tables are referenced. When processing band- 1 data in the high-gain, linear mode, the six dynamic calibration vaiues acquired for each of the first band's detectors are compared against this table. If, for example. band 1 sensor 1 has a dynamic calibration response in excess of either of the numbers $42.40,38,35,2$, or 2 by more than six levels.

Calibration Nominal Values Used in Eacl：Mode of Sensor Operation																																
ACTIVE DETECTOR STATUS：ARAARAAAAAABAAMAARAMAAAA																																
CAL mf．dge thigh gaim．limeah．lamp as																																
42	1038	352	2	42	39	3235	2	2	43	11	39	37	2	2	43	41	38	36	2	2	41	39	37	33	2	2	42	40	18	35	2	2
39	3634	322	1	42	39	3713	2	1	38	35	33	31	2	1	38	35	33	31	2	，	49	37	35	33	2	1	42	39	37	35	2	1
50	1316	433	1	51	48	4643	3	3	52	49	47	45	3	3	49	46	4．s	41	3	3	4t	65	¢ 3	41	3	2	50	17	45	42	3	3
こう	5818	455	5	52	49	46 43	5	5	55	52	49	40	5	5	52	49	43	12	5	5	48	45	85	¢ 0	4	4	18	45	42	40	4	4
CR：vedie flow gaitiolinckn．lihp a）																																
16	6411	392	2	45	18	1260	2	2	40	46	11	41	2	2	01	45	42	40	2	2	45	43	40	38	2	1	46	44	42	10	2	2
45	1311	332	2	50	47	1442	2	2	44	11	19	11	2	4	45	42	40	10	2	2	11	14	42	40	2	2	19	46	34	41	2	2
50	42 46	433	3	51	48	1643	3		52	49	61	15	3	3	49	46	45	11	3	3	49	45	43	41	3	2	50	47	45	42	3	3
55	S1 13	455	5	52	49	1543	5	5	55	52	49	46	5	5	52	42	45	42	5	5	43	45	42	40	4	4	43	45	42	40	4	4
13	17 4	455	54	4%	47	4684	5	5	50	48	47	45	5	5	50	48	46	45	5	5	48	47	45	43	5	4	69	46	46	45	5	4
17	［5 43	424	13	19	47	1514	4	3	16	44	43	42	4	3	65	44	43	42	4	3	49	46	14	43	5	3	47	17	15	44	5	3
－ 5	5452	51	17	51	¢ $\$$	5452	8	0	59	56	54	53	－	0	57	55	53	51	\bigcirc	－	57	55	53	51	－	7	51	55	53	51	－	7
55	E1 18	455	53	52	49	＜643	5		1 55	52	19	46	5	5	52	40	45	42	5	5	48	45	42	40	4	4	＋2	45	42	40	4	4
CAL weine（lom gatit comipesseo．lamp a）																																
53	5149	475	55	32	50	4947	5		54	51	50	44	6	6	54	52	50	48	3	5	48	46	45	43	5	5	51	49	47	46	6	5
57	5554	526	6	59	57	5951	7	6	54	53	50	49	6	6	55	53	52	50	7	6	56	54	52	50	1	6	56	54	52	51	7	6
55	5452	518	17	57	55	5952	0	1	58	56	51	53	1	－	57	55	53	51	－	1	51	55	53	51	1	7	57	55	53	51	1	1
55	5142	459	5 5	52	43	4643	5	3	35	52	42	48	5	5	52	4，	45	42	5	5	40	45	42	40	1	4	48	45	42	40	4	4
CRL FIOGEX（HIGH GAIH．LIIAEPR．LAHP 日）																																
13	4139	172	22	13	＜0	3036	1	2	44	42	50	38	3	2	34	41	39	11	3	2	42	40	31	36	2		44	41	39	37	3	2
11	3837	35	13	43	11	3930	1	1	139	37	35	33	1	3	40	10	16	34	4	4	42	40	38	36	4	4	45	42	41	39	4	4
49	17 15	42	13	19	47	6817	3	3	32	49	47	41	3	3	40	46	14	41	3	3	1）	45	43	40	3	2	49	47	45	42	1	3
$7{ }^{6}$	if ：	394	11	46	－1	1139	4	4	4 51	47	18	43	4	4	43	45	43	40	4	1	42	39	17	35	4	4	42	10	38	36	4	i
41	4542	102	22	47	45	1240	2	2	24%	45	49	42	2	2	40	45	41	41	2	2	47	41	42	40	2	2	48	45	43	41	2	2
46	4141	192	2	43	17	4462	2	2	213	41	19	31	2	2	45	43	12	38	2	2	47	45	43	40	2	2	50	49	45	43	3	2
43	1145	423	3	49	41	1442	3	3	52	49	17	44	3	3	41	16	44	41	3	3	47	45	43	40	3	2	19	47	45	42	3	1
40	4141	394	14	18	4．	1139	1	4	51	49	46	43	4	4	48	45	41	40	4	4	42	39	37	35	4	1	42	40	38	16	4	，
C\＆L WEOGE（HIGH GAIM，COHPHCSEED．LAMP 日）																																
50	4817	456	65	49	48	4645	6	6	50	49	47	46	6	6	50	40	47	46	6	6	49	47	46	45	6	6	50	41	17	46	6	6
48	46 15	419	16	53	48	4746	9	9	947	48	44	43	－	0	AC	46	15	44	9	9	49	48	46	45	9	9	51	50	4	47	1	4
51	5231	497	11	54	52	5049	7	6	656	54	52	50	0	7	53		50	48	7	6	53	51	49	48	7	6	31	52	31	49	7	6
46	4641	174	11	46	14	4139	1		451	49	48	4）	4	4	48	s	41	40	4	1	42	39	37	35	4	4	42	10	38	36	4	，
CAL YEDGE（LOW GRIN，CGIAPAESSED．LAMP ©）																																
53	5149	135	55	53	51	5946	5	5	554	52	50	49	5	5	33	51	50	41	5	5	52	50	49	47	5	5	51	51	49	45	5	5
52	5049	116	65	54	452	5117	6	5	550	19	17	45	5	5	51	49	43	46	6	5	53	51	50	43	6	5	55	53	51	50	6	6
54	5251	497	71	54	52	5047	7	6	656	31	52	50	0	7	53	51	54	18	7	6	51	51	49	18	7	6	54	52	51	49	7	6
46	4411	194	11	46	44	1139	1	1	151	49	46	43	1	4	48	45	43	40	4		42	39	37	35	4	1	12	40	30	16	4	4

origmal page is
 OF POOR QUALITY

the system will default to the nominal value. Using data in this table, the nominal response for every mode of sensor operation can oe applied during routine MSS data processing operations.

6.3 CALIBRATION MODIFIERS

As the system ages, it is expected that some degradation in apparent sensor respouse will occur. This can be due either to sensor electronics, variation in output from the calibraticn lamp, or a combination of factors of this type. The result can be a pronounced video striping effect. Rather than recalibrating with mathematical procedures developed for prelaunch data, NASA has determined, using Landsats 1,2 , and 3 , that calibration modifiers for both gain and offset parameters can be derived that significantly reduce visual striping. Before launch, the following relationstip is used:

$$
[V]=\frac{127}{M \beta^{\prime}}\left(V_{o}-\alpha^{\prime}\right)-A
$$

where

$$
\begin{aligned}
\mathrm{M} & =1 \\
\mathrm{~A} & =0 \\
{[\mathrm{~V}] } & =\text { output digital level } \\
\mathrm{V}_{0} & =\text { sensor voltage } \\
\beta^{\prime} & =\text { sensor gain factor } \\
\alpha^{\prime} & =\text { sensor offset factor }
\end{aligned}
$$

Postlaunch studies generate new values of M and A to minimize striping effects. Data of this type are carried in a dated file. The information presented as Table 6-2 was current as of January 25, 1983. At that time, values for M and A in the high-gain mode of operation were not available.

Table 6-3 contains the next data set in the sequence carried in the short-term parameter file. For ease of presentation, these MSS Archive Gereration (MAG) records have been merged into a single table. This data set is self-explanatory. Throughout the table, the following acronyms have been used:

ECC	Error Correction Count
CPN	Control Point Neighborhood
CP	Control Point
RLUT	Radiometric Lookup Table
R/C	Radiometric Correction
CC	Cubic Convolution
CPLB	Control Point Library Build
GCP	Geodetic Control Point
MACS	MSS Attitude Correction System
VRS	Vertical Resampling
SOM	Space Oblique Mercator
UTM	Universal Transverse Mercator
PS	Polar Stereographic
S/C	Spacecraft
HRS	Horizontal Resampling

6.4 LONG-TERM PARAMETER FILE

The long-term parameter file contain five unique records. Table 6-4 contains MIPS parameters relating 'o repeat performance and data processing required for day-to-day image generation. Table $\epsilon-5$ contains decompression tables for radiometry for bands 1,2 , and 3. 'Jsing band 1 as an example, Table 6-6 has been constructed from Table $6-5$ to illustrate how the 64 multiplexer (mux) levels transmitted to the ground stations are expanded to produce data on the 0 to 127 scale.

Table 6-3 MIPS Parameters Record

Table 6－3（Continued）

C（1）+ ＊＊＊		
（ICH MICDRD：CPIABIMRA）		
CHW l．1HF 582E	120	bluts
EPII UlxFl． 312 F ：	12%	Pixit．s
CP lithre stze	12	l． 111.5
CP MIXEC ご2r	12	PIxt： .5
	0．4605cocr＊）1	
CP IMAA HEEGUT ACCIMPAHCE COETETEA	0．5000non！ 9 ）	
	0．20anoont ol	StGMa
CP priviafion accsorathee erttenia	1	S1GMA
	$0.0000000 \mathrm{E}+00$	
CP SUEPIXPL LOCRTIOH ACCEPTAHCE CRITERIA	$0.1300000 E+00$	
FILTEK OUTt．jER CRITEITA	0.9210000 E －01	
SURHFR OF GCi＇s lirouined to gememate scps	0	
	0.3000000 E＊01	
DICITJZER CONSṫtcrict Cnitrela	0	
	0．4900000E－02	Kn＊＊2
VARIAFCE OF CP Diglocation in y	$0.7056000 \mathrm{~F}=02$	KR：＊2
MEAGUHENENT OF HOISE MATRIX ERICHENT 1	0.7220000 －03	KM＊＊2
HEASUREMEIT OF NIISE MATRIX ELEMENT 2	0.7280000 E－03	KN＊ 2
A PRIORI VAntarce of Plych	0.26000009505	KADPe？
A PRiJHS 7arlatice of yam	$0.1000000 \mathrm{E}-05$	RAOEP2
A PRIORI YARIAHCS OF ROLL	$0.1200300 \mathrm{E}-\mathrm{CS}$	RAU＊＊2
PADPAl，DISELACERENT	0.1000000 E 01	KKGA2
PITCII RAYE	$0.1000000 \mathrm{E}-11$	（RAD／EEC）＊2
ROLL RATE	$0.1000000 \mathrm{C}-11$	（חAU／SEC）＊＊2
＊＊＊P PCPG PARAMETERS RECORD P＊＊＊		
（1CD RECnuni pepgeana）		
812E OF X RESAMPG？：：G DUFFER	3540	PIXELS
BIZE UF Y RESAIdHLING BUFFER	16	LIHES
\＃＊ャ＊＊3／C AHD IUSTRUHEMT RECDRD＊＊＊＊		
（ICO LISCOHDS S／Cr．IUSI）		
NOHIIIAL．PIECH	$0.0000000 c+00$	RADIRNS
MOMIAAL ROGL	$0.00000005+00$	RADIAlls
doninal yay	0.0000000 eta	R\＆DIANE
PItcm AliginaENT	0．4702700t－03	RADIAHE
ROLL ALICRHEMT	0．2860402E－02	gavians
YAM Atitgrileit	$0.5478400 \varepsilon-03$	RAOIAHS
MACS PITCII RLIGRAEHT	$0.0000000 c+00$	RAOTARIS
macs roll alignment	$0.0000000 E+00$	RAUIAHS
macs rax aliciamelt	$0.0000000 \varepsilon+00$	RADIARG
（ OF x benchmarks（OUTPYT SPACE OR VRS）	61	
－of Y IEENCHMARAS（OUTPUT SPACE OR VRS）	44	
（ DERCHitark spacil：G（OUTPUT SPACE OR VRS）	0．6000000E＋02	P1xELS
7 AENCHKARK SPACIIG（OUTPUT SPACE OR VRS）	$0.7000000 \mathrm{E}+02$	PIXELS
SCALE FACTOR FOR SOM	$0.1000000 E+01$	
SCALE FACTGR FOR UTh	$0.9996000 \mathrm{E}+00$	
BCAIE FACTOR FOR PS	$0.1000000 \mathrm{E}+01$	
IIALF FRAME TIME	$0.1468400 \mathrm{E}+05$	Msecs
SJME TO IIIOSCAM	$0.1600000 \mathrm{E}+02$	HSECS
mokellt of theftia of mirnot	0． $1100000 \mathrm{E}=01$	110Lい＊SFC＊＊
TORSIOAAS CPRSTAHT CS NIRROR	$0.2660000 E+02$	
mss mand sepanation（eand i）	0.0000000 E ＋00	Pextes
HES natin sepiakitioll（rand 2）	$0.1950070 \mathrm{E}+01$	PİELis
hsif nalid sipiantion（baplo j）	0．د－908く0t： 01	fixels
MSS MALD EEPLRATIUR（BAND（）	$0.5040910 \mathrm{~F}+01$	PIXClis
NOMIIAAS E／C VELOCITY	$0.7500000 \mathrm{ct08}$	KN／SECS
MOMINAL GROUNO VELOCITY	0.67500007 .101	KM／EECS
（ICO RECOMDI s／CEIRS2）		
	0． $100000 \mathrm{~F}+02$	Pixels
	$0.4000000 \mathrm{E}+02$	Lilles
	0． $2000000 \mathrm{t}+02$	Pfxels
	$0.7000: 300 \% 02$	hitnes
OUfint rixtl sitie	0．5700ROnE－01	χ^{4}
ACTIUF SCAN Tinf	n． $1270 n 0018$	spiciunios

Table 0－3（Continued）

MIMINAL FiHE HETMEEM SWFIP SPARTS
MIDSCAN I＇filt PixEl．VAB．HE
 OUfSUT PIXEL BIIMAFR FOR AIGHP OC，NER
IMJUT PIXIT．LIIC．OF TNE R．EFT JVERIAP MARKS INTHT Pixfl LoC．or tir nernt oveluidp mallis

 －OF OUTPIT I．JIF．S AONVE PIIE IMAGE FRAME OF LAST l．jNE OF THE FRANE
MAXIMUM ABSOLUTR：YABUE OF KRS J DIFPRREACE MAITMIN ABSOLUTE VALUE UF MHSEI OIFFEREPCE
 MAXIXIM ABEBLUTE VALUF OF YAS－X DIfFCXEfice Mram valite of hiss J Diffencmee
heah palue of has x difference
mean value of trs y oirferfines
mean value of vis x nitference
COOROIHATE OF ECENE CE：ITER IN HAS GRID
COORUSNATE DF gCE：IE CEI：TER IN VAS GAID
FIME OETHFEN PIZCLS
TIME BETEEFN S／E EPHEMERIS POINTS
PIME RETMEEN SIC AITITUDE POIITS
MO．DR EEFERE PRIDR TO SC．CE：ITER IN UEEFUL DAFA
MONITAL SEAN LINE AI SCENE CEATER（NADINLINE）0．1203500EAO4
（tCD RFCONC：S／CZSENS）
RONIMAL PIXELS PER IHPUT LI ic
O OF IKPUT liINES IH PARTIABLY RRCCESSED IMAGE
MORIMAC SCALE OF IHPUT IUTER－PIXEL OIE天AHCE
KOMINAL SCI．AE OF EYOUT I！TER－HIIE DISTANCL

－of LIMES PER FULLY PSOCESSED IAARE
SCRLi：of fULL：PROCESSED i！！TER－OIXEL DISTANCE
ACALF Of FULLY PROCESSED INYER－GI！L OISJABCE NONIMLL SPACECRAFT ALEITUDE
HOKINRL IUPIT SWATII GIUTH
mSS MIfXIS ：DOEG COEFEICIENT AO
hSs m：Snon rocel cosrfreifilt al
kES fiaronh munel cosificient d2
WE：MIRROR YODSL COEESICIEHT AJ
Mंड MAXIMUA MIRRUR ANGLE
GEAN SREN COMSTANT
TYE UETVEPN SUCCTESI7E SVEEPS
TIME FOR AC゙TIVE PORTION OF HISROQ IHEEP SEMI GHAJUR AKIS UF EARTH（IMT．SPHEILOID） SEAI－MIMOR AXIS OF EARTH（INT．SPKEROID） cantil cugyature coustant

0．7142nant：－01
$0.162050 \mathrm{nt:} 04$ 0.000000 CE 00 0． 25 SROANE： 04 －0．200C300を－02
$0=3260000$ ？： 04
$0.2197000 \mathrm{~F}: 04$
$0.2030000 E+03$
0.0000000 F .00
0.2983000 F .04

0． 12000 cnfe 0
$0.1100000 \mathrm{E}, 01$
0.760000 Et：00
$0.1200000 \mathrm{E}=01$
0.1100000 C 02
0.8000000 F．+02
$0.70000005+02$
0． $6000000 \mathrm{E}+02$
0． 305500 EE 0 ？
0.2230000 ti 02
0.9950000 F －05
0.2048000 rip 01
0.5120000 EP 00
$0.1201500 E+04$
seco：10e
sECRMLS seconve

PIXELS
LINES heters merens PIXELS LIHF．S METERS YETEAS HETEAG heTERS
naorsecs HSECS HSECS Riugi：l：s RADIAHS seconus secolios KHS KMS
lico arconor sodo
MSS SAKDIIIME DELAYS POR DETECIORS 1 TIRU 2 （（PIXCLS）：

MSS AAMD TO AAND GFFSET FUR GRHO 2 （REL．TO I）

90070Fti	
0.38908 coctol	
0．504091crect	

Table 6-4
Additional MIPS Parameters

```
MIPS LOHG TFRX PARAMETER FILE MIPA.PARHSIML4OOS.AM
2SOJAN-198314:12:06.CO
```



```
ICOE MIPS LOHGTERM PARAMETER RECORD LONGTERNSOOO
LOIGGEDH4000
|AF& EARTH ROTATION BETVEEN ASCENDING HDDES (ARC-NIN)
    1487.320
..:$4 ONBIT RE゙PEAT CYCLE (DAYS)
    16.00000
In*4 OROITS PEA CTCLE
    233.0000
IR*4 SATELLITE PERIOO (HINOTES)
    90.08412
IR*4 IHCLIHATIUN OF ORBIT (DEGREES)
    88.20000
IR*4 E.CCEITNJCITY OT EARTH CLIPSOID
    A.1992000%-02
IRF4 ORBIT RADIUS (RETERS)
    7033465.
IR&4 lUONGITUDE OF ASCENDING NODE PRIOR TO PATH &
    127.7605
ICP2 TYPE OF ElHPEROID
.64
IR*G EARTH RAOIUS AT EOURIOR (KRS)
    6378.328
IR#4 WRS SPACING AT THE EQUATOR (DEGREES)
    1.54506孚
IIF4 NUABER OF PATHS IN THE WRS
    235
IT*4 RUKUER OF ROWS IN THE WRS
        248
1I*4 NUKAER OF RONS IN THE DELTA EPHEMERIS
        16
IT*4 NUMDER OF COLUMNS IN THE DELTA EPHENERIS
    3
IT&4 NUMDER UF ROWS IN THE DELTA ATTITUDE
        64
II*4 NUMISER OF COLUMNS IN THE DEGTA RTTITUDE
        3
IR#4 MIDOEE LINE NUMBER OF IAPUT NOMINAL SCENE
    1203.500
IR&4 MIDOLE PIXEL NUMAER DF INPUT HOMINAL SCENE
    1620.500
II*4 MUNAEA OF COLUMNS IH THE HRS
                                    6 4
1I*4 NUNDER OF ROWS IH TIIE IIRS
        5%
1I*4 MUMBER OF COLURHS IN TIIE VAS
        6 1
11*4 HUNDEN OF ROWS IN THE YRS
        4 4
```


ORIGNAL PAGE IS OF POOR QUALITY

Table 6-5
Decompression Tables for Bands 1, 2, and 3

ortgmal page is
 OF POOR QUALITY

Table 6-6
Decompressed Digital Values

Original	Decompressed	Original	Decompressed
0	0	32	42
1	1	33	44
2	2	34	46
3	3	35	48
4	3	36	50
5	4	37	52
6	5	38	54
7	6	39	56
8	7	40	59
9	8	41	62
10	9	42	65
11	10	43	67
12	11	44	70
13	12	45	73
14	13	46	76
15	14	47	79
16	16	48	82
17	17	49	85
18	18	50	88
19	20	51	91
20	21	52	94
21	22	53	96
22	24	54	99
23	26	55	102
24	27	56	105
25	29	57	108
26	31	58	111
27	33	59	114
28	34	60	117
29	36	61	120
30	38	62	123
31	40		127

The third record of importance (Table 6-7) is the set of C_{i} and D_{i} values calculated using prelaunch data. These values are presented for each sensor in each mor $\downarrow f$ operation. The sequence of values for each calioration lamp source follows the same pattern given in Table 6-1, in which the calibration response has been presented in terms of digital counts. This set of C_{i}, D_{i} is used to calculate sensor gain and offset in terms of radiance and calibration wedge digital response. These data are presented in Tables 6-7, 6-8, 6-9, and 6-10. The fourth record contains calibration wedge offsets for each sensor in the high- and low-gain modes of operation. These data presented in Tables 6-11 and 6-12 can be corrclated directly with calibration wedge response. Therefore, the following applies for sensor 1, band 1 , and high gain:

Word	460	470	480	490	910	920
Calilration Response	42	40	38	35	2	$:$

where the calibration response refers tc the calibration wedge describerd in Table 6-1.

Finally, Table 5-13 contains data used in image generation relating to tic-mark placement and separation and to the size of the annotation words used by MIPS.
 ICFiÁ CRLIBRATIOK NECORD KEY
CALICOEFE 4000
LAKP A (PRINE) high gain 0.5090237
-0.6931777

 - Ioj7j13
2 e5jn405-01
$=$
0
0
0
0
0
0
0
0
の. Tilalsaren

$\begin{array}{rr}0.5034660 \mathrm{E}-01 & -0.2014560 \mathrm{E} \cdot 08 \\ 0.0 .3702430\end{array}$

0.3045716
0.1219324
0.3811730
$0.1728009 E-01$
0.3791494
-0.18045205-01
$0.3947210 \mathrm{O}-01$
0.3729172
$-0.549 .200 \mathrm{C}-02$
0.363589
$-0.6085090 \mathrm{E}-02$
0.3724152
-0.11567602
0.3803455
0.3671185
-n.9rintinnFans 0.455089
$0.4951019 \mathrm{E}-01$ $0 . \operatorname{taj3200E-01}$ $0.4772620 \varepsilon-04$ 0.4419056
$0.4818709 E-01$ 0.4475909
$0.4978: 10 \varepsilon-01$ 0. $0.1736690 \mathrm{E}-01$ $-0.4765340 \mathrm{E}-01$ 0.4620424
$0.4535430 \mathrm{E}-09$ $0.8 F 37278$
C. $182525 C E-0 i$ O.439C34 DEFECTOR 1 OFESES DETECTOR 2 OFFSETS\& DETECTOR 3 OFFSETSS 15firs
GFSET3:
GAIMSt OEESETSI
 GAINS:
GFFSETSB
 GAIHS: ∞
5
5
4
4
4
4

 isitasisu Cl autJisisu

Table 6-7 (Continued)

DETECTOR		GAINSt
	13	OFESETS
		falist
DETECTOR	14	'tesetsi
		Avict
DEJECTOR	13	.\% 61
		..insi
DETECTOR	16	OFESETS:
		GAIHS!
DETECSOR	17	CEESETSI
		GM1ASt
DETECTOR	18	OfTSETS:
		GAIHS!
DETECEOR	19	OFTSETSI
		GA3NS!
DETECTOR	20	OFESET31
		Gdials
DETECTOR	21	OFFSETべ
		GA) 1
DETECTOP	22	OFFSETS:
		GAIHE:
DETECTOH	23	OFESET31
		GA;NSt
DETECTOR	24	OFFSETS
		GAIts:

CRIGINAL PAGE IS OF PCOR QUALTTY

OFTSETS (CI) ANO GAIMS (OIt Fah AIX CAC HEDGE VALUES

LOM ;ABM

 - OFFSETSA GAINS:

 ∞
0
$=1$
0
0
0
0
0
6

 isiJSJ. 0
151149
 gifsctai GAIMSt

 ∞
ω
ω
n
n
6
6

 ∞
2
2
0
0
0
0
6
6

 12
ω
m
6
6

 0
0
0
0 DETECTOR OryCCTOR DETECTOA OEEECTOR OE:ECTOR OETECTON DETECTOR 10 DETECTOR 11 DETECTOR 12 DTIECTOR 13 DETECTOH 14 DETECTOR 15 ∞
6
0
6
6
6
6
6 DETECTOR 17 OETECTOR 10
 0
0
0
0
0
0
0 $=$
0
0
0
0
0 DE:ECTCR 22 N

 DETECTOR DETECTOR DETECTOA

0.5152170

Table 6-9
Calibration Cocfficients for Iligh-Gain, Redundant Lamp
0.3447040E-01 $0.3447040 E-01$
0.2531453
$0.3570230 E-01$ $0.3370230 E-01$
0.2585252 0. $5: 5790 \mathrm{E}=01$ 0. 35 Silsok-01 :
 : $\overrightarrow{0}$
$\dot{\Delta}$
0
0
0
0 0
i
i
0
0
0
0
0
0 0
i
i
\vdots
0
0
0
n
n
n
0
0
0 -

 \circ
i
i
0
0
0
0
0 $\overline{0}$
\vdots
\vdots
\vdots
\vdots
\vdots
0
0
0
0 -
 $\begin{array}{r}0 \\ i \\ \dot{0} \\ \dot{0} \\ \hline\end{array}$ -

 i
i
0
i
i
$\underset{\sim}{i}$
\vdots
i

 $-0.83937705-01$
0.4306146 $-0.3131310 \mathrm{c}-01$
 0
i
i
i
i
i
 B
0
0
0
0

0 | 0 |
| :---: |
| 0 |
| \vdots |
| \vdots |
| 0 |

 \bar{o}
i
\vdots
0
0
0
0
0
0
\vdots
0
0 0
i
\vdots
\vdots
0
0
0
0
0
0
0
0 8
m
0
0
0
0
0

 $\begin{array}{r}\overline{0} \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$ 0
1
0
0
0
0
0
0 0
i
i_{1}
0
n
n
0
n
0
0
0
0

 0
i
0
0
0
0
0
0
0
0
0
0
0
0

 $\overline{0}$
i
\vdots
0
0
0
0
0
0
0
0 -0.7632510E-01 0.73 Cl
$-0.7556350 \mathrm{E}-01$ 0.1513162
$-0.15531006-01$ 0
i
0
0
0
0
0
0
0
0
0
 0.5010001 ralis: OFESETA: ∞
0
0
$=-\infty$
6
6
0
0
6
6
0

告

 N
\vdots
0

 -tector 20 nfrisersi

-0. $1855000 E=01$ 0.3532601
$-0.3 C S 1690 \mathrm{E}-01$:

0
0
0
0
0

$\cdots \rightarrow \infty \quad \omega$ $6 \quad 80131130$

- 80103130 OETECTOA DETECTOR DETECTOR
DETECTUA DETECTOR OETCCTOR CETECTOH 0

0.2573905
0.0717300 E－02

0.25315
0.8015

0
0
1
6
0
0
4
\vdots
9
0
0
0
0.2639937
$0.9113500 E-02$

0
0
0
0
0
0
0
0

 0
0
\vdots
0
\vdots
$=-$
$\vdots=$
0
$=0$
 0.2905130
-0.170352 のE－ 02

 0.2985015
$-0.1031400 \mathrm{E}-02$

 n
$\underset{n}{7}$
$\underset{\sim}{2}$
\vdots
0

$$
1
$$

 6
4
4
6
\vdots
\vdots
0
 5

 OFFAIS：
OHESETS：

 5
5
5
5
5
0

6
6
6
0
0
0

ω
ω
6
6
6
6

Table 6.11
Calibration Wedge Offsets for the Prime Lamp

Table 6-12
Calibration Wedge Offsets for the Re Jundant Lamp

L.ARP θ (nEDUNDANT)
CAL WEOCE OFESETS
HIGH GAIH CAG weDgF OFESF:SS FOW STX CAL wrincie yalues

Table 6-13
Geometric Image Tic-Mark and Annotation Parameters
Carried in the Long-Term Record


```
ICEI2 POLAR STEREDGRAPHIC TICKMARK RECUKD KEY
PETCXMRK4000
IG*4 HDETZONTAL PIXEL SIZE (METERS)
    57.00000
IR** VERTICRL PIXEL SIZE (NETERS)
    57.00COC
It*4 TICKGARK SEPARATICN (KMSS
II*4 LEMGTH OF HONIZONTAG ANHOTATIOA BLOCK (PTXEES)
    330
1*4 LENGTH OF VERTICAG AHKNTAFION BLOCK (LIHES)
    420
II*4 PIXELS PER DUTPUT LIRE (PIXELS)
            3548
II*f LINES IH THE OUTPUT IHAGE (LINES)
    2983
II*S DISTAIICE IN PIXELS AHAY FRON THE X AXIS OF THE FS STSTEM
    1492
{R*& WIHDNW S{ZE IROUND 0.0 FOR P(1.1} AHU P(1.2)
9.89999905-03
IR*4 HINHOH SIZE AROUND 0.90.180.090 (DEGNEES\
0.1745000
```


[^0]: ${ }^{\mathrm{a}}$ No filter specification
 Fails to niect filter specification
 Rejectable as outlier: $\alpha=0.01$

[^1]: Wiails to meet filter specification
 ${ }^{c}$ With outlier channel included
 ${ }^{\text {With outlier chennel excluded }}$

