11,951 research outputs found
Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model
The Lattice Gas Model was extended to incorporate the effect of radial flow.
Contrary to popular belief, radial flow has little effect on the clusterization
process in intermediate energy heavy-ion collisions except adding an ordered
motion to the particles in the fragmentation source. We compared the results
from the lattice gas model with and without radial flow to experimental data.
We found that charge yields from central collisions are not significantly
affected by inclusion of any reasonable radial flow.Comment: 8 pages, 2 figures, submitted to PRC; Minor update and resubmitted to
PR
Tracking the phase-transition energy in disassembly of hot nuclei
In efforts to determine phase transitions in the disintegration of highly
excited heavy nuclei, a popular practice is to parametrise the yields of
isotopes as a function of temperature in the form
, where 's are the measured yields
and and are fitted to the yields. Here would be
interpreted as the phase transition temperature. For finite systems such as
those obtained in nuclear collisions, this parametrisation is only approximate
and hence allows for extraction of in more than one way. In this work we
look in detail at how values of differ, depending on methods of
extraction. It should be mentioned that for finite systems, this approximate
parametrisation works not only at the critical point, but also for first order
phase transitions (at least in some models). Thus the approximate fit is no
guarantee that one is seeing a critical phenomenon. A different but more
conventional search for the nuclear phase transition would look for a maximum
in the specific heat as a function of temperature . In this case is
interpreted as the phase transition temperature. Ideally and would
coincide. We invesigate this possibility, both in theory and from the ISiS
data, performing both canonical () and microcanonical ()
calculations. Although more than one value of can be extracted from the
approximate parmetrisation, the work here points to the best value from among
the choices. Several interesting results, seen in theoretical calculations, are
borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table
Model for hypernucleus production in heavy ion collisions
We estimate the production cross sections of hypernuclei in projectile like
fragment (PLF) in heavy ion collisions. The discussed scenario for the
formation cross section of hypernucleus is: (a) Lambda particles are produced
in the participant region but have a considerable rapidity spread and (b)
Lambda with rapidity close to that of the PLF and total momentum (in the rest
system of PLF) up to Fermi motion can then be trapped and produce hypernuclei.
The process (a) is considered here within Heavy Ion Jet Interacting Generator
HIJING-BBbar model and the process (b) in the canonical thermodynamic model
(CTM). We estimate the production cross-sections for light hypernuclei for C +
C at 3.7 GeV total nucleon-nucleon center of mass energy and for Ne+Ne and
Ar+Ar collisions at 5.0 GeV. By taking into account explicitly the impact
parameter dependence of the colliding systems, it is found that the cross
section is different from that predicted by the coalescence model and large
discrepancy is obtained for 6_He and 9_Be hypernuclei.Comment: 9 pages, 4 figures, 3 tables, revtex4, added reference
Further Evidence for the Conformal Structure of a Schwarzschild Black Hole in an Algebraic Approach
We study the excitations of a massive Schwarzschild black hole of mass M
resulting from the capture of infalling matter described by a massless scalar
field. The near-horizon dynamics of this system is governed by a Hamiltonian
which is related to the Virasoro algebra and admits a one-parameter family of
self-adjoint extensions described by a parameter z \in R . The density of
states of the black hole can be expressed equivalently in terms of z or M,
leading to a consistent relation between these two parameters. The
corresponding black hole entropy is obtained as S = S(0) - 3/2 log S(0) + C,
where S(0) is the Bekenstein-Hawking entropy, C is a constant with other
subleading corrections exponentially suppressed. The appearance of this precise
form of the black hole entropy within our formalism, which is expected on
general grounds in any conformal field theoretic description, provides strong
evidence for the near-horizon conformal structure in this system.Comment: 9 pages, Latex, minor changes in the text, references adde
Some aspects of preparation of Coal for Coking (11)
THE plans for India's industrial expansion envisage
manifold increase in all branches of engineering indus-tries with a concomrnittant increase in the production and consumption of all quality of coals.
Although India has fairly large reserves of inferior
grades of coals, her resources of coking coals, including
the washable reserves, are by no means plentiful. To meet the demand of increasing production of steel for the succ- essive Five Year plans, the consumption of coking coal will he stepped up inauy tines. This will result in even a quicker rate of depletion of the dwindling reserves of cobing Coals. There can, therefore, be no difference of opinion about the need for restricting the use of metall-urgical coals for coking purpose alone and for the adop-tion of suitable means for the beneficiation of the high ash coals.
The installation of the coal washing plants, both in the private as well as public sectors, and the projects of erecting more washeries are concrete steps towards this objective, but much still remains to be done, and it has to be admitted that the magnitude of the problem has not yet been fully realised
Development of a window correlation matching method for improved radar rainfall estimation
International audienceThe present study develops a method called window correlation matching method (WCMM) to reduce collocation and timing errors in matching pairs of radar measured reflectivity, Ze, and gauge measured rainfall intensity, R, for improving the accuracy of the estimation of Ze?R relationships. This method was compared with the traditional matching method (TMM), the probability matching method (PMM) and the window probability matching method (WPMM). The calibrated relationship Ze=18.05 R1.45 obtained from 7×7 km of space window and both present and 5 min previous time of radar observation for time window (S77T5) produces the best results for radar rainfall estimates for orographic rain over the Mae Chaem Watershed in the north of Thailand. The comparison shows that the Ze?R relationship obtained from WCMM provide more accuracy in radar rainfall estimates as compared with the other three methods. The Ze?R relationships estimated using TMM and PMM provide large overestimation and underestimation, respectively, of mean areal rainfall whereas WPMM slightly underestimated the mean areal rainfall. Based on the overall results, it can be concluded that WCMM can reduce collocation and timing errors in Ze?R pairs matching and improve the estimation of Ze?R relationships for radar rainfall. WCMM is therefore a promising method for improved radar-measured rainfall, which is an important input for hydrological and environmental modeling and water resources management
Cosmology with decaying tachyon matter
We investigate the case of a homogeneous tachyon field coupled to gravity in
a spatially flat Friedman-Robertson-Walker spacetime. Assuming the field
evolution to be exponentially decaying with time we solve the field equations
and show that, under certain conditions, the scale factor represents an
accelerating universe, following a phase of decelerated expansion. We make use
of a model of dark energy (with p=-\rho) and dark matter (p=0) where a single
scalar field (tachyon) governs the dynamics of both the dark components. We
show that this model fits the current supernova data as well as the canonical
\LambdaCDM model. We give the bounds on the parameters allowed by the current
data.Comment: 14 pages, 6 figures, v2, Discussions and references addede
Executive summary—Family planning programs for the 21st century: Rationale and design
This document contains the executive summary of “Family Planning Programs for the 21st Century: Rationale and Design.” The first half of the book makes the case for why increased funding and support for voluntary family planning programs are needed. The second half explains how reinvigorated voluntary family planning programs can be structured to operate more effectively. Family planning is one of the most successful development interventions of the past 50 years. It is unique in its range of potential benefits, encompassing economic development, maternal and child health, educational advances, and women’s empowerment. Research shows that with high-quality voluntary family planning programs, governments can reduce fertility and produce large-scale improvements in health, wealth, human rights, and education. Substantial investments in promoting voluntary family planning programs and increasing access for all women should be a top priority
- …