3,944 research outputs found

    Enhancing quantum transduction via long-range waveguide mediated interactions between quantum emitters

    Full text link
    Efficient transduction of electromagnetic signals between different frequency scales is an essential ingredient for modern communication technologies as well as for the emergent field of quantum information processing. Recent advances in waveguide photonics have enabled a breakthrough in light-matter coupling, where individual two-level emitters are strongly coupled to individual photons. Here we propose a scheme which exploits this coupling to boost the performance of transducers between low-frequency signals and optical fields operating at the level of individual photons. Specifically, we demonstrate how to engineer the interaction between quantum dots in waveguides to enable efficient transduction of electric fields coupled to quantum dots. Owing to the scalability and integrability of the solid-state platform, our transducer can potentially become a key building block of a quantum internet node. To demonstrate this, we show how it can be used as a coherent quantum interface between optical photons and a two-level system like a superconducting qubit.Comment: The maintext has 6 pages, two column and 4 figure

    Photon Scattering from a System of Multi-Level Quantum Emitters. I. Formalism

    Full text link
    We introduce a formalism to solve the problem of photon scattering from a system of multi-level quantum emitters. Our approach provides a direct solution of the scattering dynamics. As such the formalism gives the scattered fields amplitudes in the limit of a weak incident intensity. Our formalism is equipped to treat both multi-emitter and multi-level emitter systems, and is applicable to a plethora of photon scattering problems including conditional state preparation by photo-detection. In this paper, we develop the general formalism for an arbitrary geometry. In the following paper (part II), we reduce the general photon scattering formalism to a form that is applicable to 11-dimensional waveguides, and show its applicability by considering explicit examples with various emitter configurations.Comment: This is first part of a two part series of papers. It has 11 pages, double column, and one figur

    Prediction of quantum stripe ordering in optical lattices

    Full text link
    We predict the robust existence of a novel quantum orbital stripe order in the pp-band Bose-Hubbard model of two-dimensional triangular optical lattices with cold bosonic atoms. An orbital angular momentum moment is formed on each site exhibiting a stripe order both in the superfluid and Mott-insulating phases. The stripe order spontaneously breaks time-reversal, lattice translation and rotation symmetries. In addition, it induces staggered plaquette bond currents in the superfluid phase. Possible signatures of this stripe order in the time of flight experiment are discussed.Comment: 4 pages, three figures, accepted by Phys. Rev. Let

    Incommensurate superfluidity of bosons in a double-well optical lattice

    Full text link
    We study bosons in the first excited Bloch band of a double-well optical lattice, recently realized at NIST. By calculating the relevant parameters from a realistic nonseparable lattice potential, we find that in the most favorable cases the boson lifetime in the first excited band can be several orders of magnitude longer than the typical nearest-neighbor tunnelling timescales, in contrast to that of a simple single-well lattice. In addition, for sufficiently small lattice depths the excited band has minima at nonzero momenta incommensurate with the lattice period, which opens a possibility to realize an exotic superfluid state that spontaneously breaks the time-reversal, rotational, and translational symmetries. We discuss possible experimental signatures of this novel state.Comment: 4 pages, 5 figures

    Quantum Wire Network with Magnetic Flux

    Get PDF
    The charge transport and the noise of a quantum wire network, made of three semi-infinite external leads attached to a ring crossed by a magnetic flux, are investigated. The system is driven away from equilibrium by connecting the external leads to heat reservoirs with different temperatures and/or chemical potentials. The properties of the exact scattering matrix of this configuration as a function of the momentum, the magnetic flux and the transmission along the ring are explored. We derive the conductance and the noise, describing in detail the role of the magnetic flux. In the case of weak coupling between the ring and the reservoirs, a resonant tunneling effect is observed. We also discover that a non-zero magnetic flux has a strong impact on the usual Johnson-Nyquist law for the pure thermal noise at small temperatures.Comment: LaTex, 6 pages, 6 figures, improved discussion of the impact of the magnetic flux on the pure thermal nois

    A New Compact Delay, Doppler Stretch and Phase Estimation CRB with a Band-Limited Signal for Generic Remote Sensing Applications

    Get PDF
    Since time-delay, Doppler effect and phase estimation are fundamental tasks in a plethora of engineering fields, tractable lower performance bounds for this problem are key tools of broad interest for a large variety of remote sensing applications. In the large sample regime and/or the high signal-to-noise ratio regime of the Gaussian conditional signal model, the Cramér–Rao bound (CRB) provides an accurate lower bound in the mean square error sense. In this contribution, we introduce firstly a new compact CRB expression for the joint time-delay and Doppler stretch estimation, considering a generic delayed and dilated band-limited signal. This generalizes known results for both wideband signals and the standard narrowband signal model where the Doppler effect on the band-limited baseband signal is not considered and amounts to a frequency shift. General compact closed-form CRB expressions for the amplitude and phase are also provided. These compact CRBs are expressed in terms of the baseband signal samples, making them especially easy to use whatever the baseband signal considered, therefore being valid for a variety of remote sensors. The new CRB expressions are validated in a positioning case study, both using synthetic and real data. These results show that the maximum likelihood estimator converges to the CRB at high signal-to-noise ratios, which confirms the exactness of the CRB. The CRB is further validated by comparing the ambiguity function and its 2nd order Taylor expansion where the perfect match also proves its exactness
    • …
    corecore