566 research outputs found

    THERAPEUTIC MANAGEMENT OF SARCOPTIC MANGE IN RABBIT WITH IVERMECTIN

    Get PDF
    Sarcoptic mange infected non-descriptive rabbits were successfully treated with Ivermectin @ 400 ”g / kg body weight sub-cutaneously once weekly for 4 weeks resulted complete recovery within a month in Kalyani area, West Bengal, India

    The Absorptive Extra Dimensions

    Full text link
    It is well known that gravity and neutrino oscillation can be used to probe large extra dimensions in a braneworld scenario. We argue that neutrino oscillation remains a useful probe even when the extra dimensions are small, because the brane-bulk coupling is likely to be large. Neutrino oscillation in the presence of a strong brane-bulk coupling is vastly different from the usual case of a weak coupling. In particular, some active neutrinos could be absorbed by the bulk when they oscillate from one kind to another, a signature which can be taken as the presence of an extra dimension. In a very large class of models which we shall discuss, the amount of absorption for all neutrino oscillations is controlled by a single parameter, a property which distinguishes extra dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.

    Possible Z-width probe of a "brane-world" scenario for neutrino masses

    Get PDF
    The possibility that the accurately known value of the Z width might furnish information about the coupling of two neutrinos to the Majoron (Nambu-Goldstone boson of spontaneous lepton number violation) is proposed and investigated in detail. Both the "ordinary" case and the case in which one adopts a "brane" world picture with the Majoron free to travel in extra dimensions are studied. Bounds on the dimensionless coupling constants are obtained, allowing for any number of extra dimensions and any intrinsic mass scale. These bounds may be applied to a variety of different Majoron models. If a technically natural see-saw model is adopted, the predicted coupling constants are far below these upper bounds. In addition, for this natural model, the effect of extra dimensions is to decrease the predicted partial Z width, the increase due to many Kaluza-Klein excitations being compensated by the decrease of their common coupling constant.Comment: RevTeX, 12 pages, 3 figure

    Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped Wall Temperature

    Get PDF
    The effect of radiation on natural convection incompressible viscous fluid near a vertical flat plate with ramped wall temperature has been studied. An analytical solution of the governing equation has been obtained by employing Laplace transform technique. It is examined that two different solutions for the fluid velocities, one valid for fluids of Prandtl number Pr different from 1 Ra , Ra being the radiation parameter and the other for which the Prandtl number equal to 1 Ra . The variations of velocities and fluid temperature are presented graphically. Furthermore, the radiative heat transfer on natural convection flow near a ramped plate temperature has been compared with the flow near a plate with the constant wall temperature. It is found that an increase in radiation parameter leads to rise the fluid velocity as well as temperature

    Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation

    Full text link
    We discuss a minimal Supersymmetric SO(10) model where B-L symmetry is broken by a {\bf 126} dimensional Higgs multiplet which also contributes to fermion masses in conjunction with a {\bf 10} dimensional superfield. This minimal Higgs choice provides a partial unification of neutrino flavor structure with that of quarks and has been shown to predict all three neutrino mixing angles and the solar mass splitting in agreement with observations, provided one uses the type II seesaw formula for neutrino masses. In this paper we generalize this analysis to include arbitrary CP phases in couplings and vevs. We find that (i) the predictions for neutrino mixings are similar with Ue3≃0.18U_{e3}\simeq 0.18 as before and other parameters in a somewhat bigger range and (ii) that to first order in the quark mixing parameter λ\lambda (the Cabibbo angle), the leptonic mixing matrix is CP conserving. We also find that in the absence of any higher dimensional contributions to fermion masses, the CKM phase is different from that of the standard model implying that there must be new contributions to quark CP violation from the supersymmetry breaking sector. Inclusion of higher dimensional terms however allows the standard model CKM phase to be maintained.Comment: 22 pages, 6 figure

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1−x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    Intranuclear Inclusions of Expanded Polyglutamine Protein in Spinocerebellar Ataxia Type 3

    Get PDF
    AbstractThe mechanism of neurodegeneration in CAG/polyglutamine repeat expansion diseases is unknown but is thought to occur at the protein level. Here, in studies of spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), we show that the disease protein ataxin-3 accumulates in ubiquitinated intranuclear inclusions selectively in neurons of affected brain regions. We further provide evidence in vitro for a model of disease in which an expanded polyglutamine-containing fragment recruits full-length protein into insoluble aggregates. Together with recent findings from transgenic models, our results suggest that intranuclear aggregation of the expanded protein is a unifying feature of CAG/polyglutamine diseases and may be initiated or catalyzed by a glutamine-containing fragment of the disease protein

    Generating Neutrino Mass in the 331 Model

    Get PDF
    A mechanism for generating small tree-level Majorana mass for neutrinos is implemented in the 331 Model. No additional fermions or scalars need to be added, and no mass scale greater than a few TeV is invoked.Comment: LaTex, 7 pages, no figures. Revised version to appear in Phys. Rev.

    On 'Light' Fermions and Proton Stability in 'Big Divisor' D3/D7 Swiss Cheese Phenomenology

    Full text link
    Building up on our earlier work [1,2], we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-$brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor \Sigma_B. This part of the paper is an expanded version of the latter half of section 3 of a published short invited review [3] written up by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, as well as estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 10^{61} years. Based on GLSM calculations in [1] for obtaining the geometric Kaehler potential for the "big divisor", using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices, obtaining a metric for the Swiss-Cheese Calabi-Yau used, that becomes Ricci flat in the large volume limit.Comment: v2: 1+25 pages, Title modified and text thoroughly expanded including a brief discussion on obtaining Ricci-flat Swiss Cheese Calabi-Yau metrics using the Donaldson's algorithm, references added, to appear in EPJ

    An SO(10) GUT Model With Lopsided Mass Matrix and Neutrino Mixing Angle theta_13

    Get PDF
    An alternative supersymmetric SO(10) grand unification model with lopsided fermion mass matrices is introduced. It generates a large solar-neutrino-mixing angle through the neutrinos' Dirac mass matrix constrained by the SO(10) group structure, avoiding the fine-tuning required in the Majorana mass matrix of right-handed neutrinos. The model fits well the known data on masses and mixings of quarks and leptons, and predicts a sizable lepton mixing sin⁡22ξ13≃0.074\sin^22\theta_{13}\simeq 0.074, which is significantly larger than that of the original lopsided model.Comment: 9 page
    • 

    corecore