25 research outputs found

    Differential induction of Leishmania donovani bi-subunit topoisomerase I–DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I

    Get PDF
    Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I

    ‘LeishMan’ topoisomerase I: an ideal chimera for unraveling the role of the small subunit of unusual bi-subunit topoisomerase I from Leishmania donovani

    Get PDF
    The active site tyrosine residue of all monomeric type IB topoisomerases resides in the C-terminal domain of the enzyme. Leishmania donovani, possesses unusual heterodimeric type IB topoisomerase. The small subunit harbors the catalytic tyrosine within the SKXXY motif. To explore the functional relationship between the two subunits, we have replaced the small subunit of L.donovani topoisomerase I with a C-terminal fragment of human topoisomerase I (HTOP14). The purified LdTOP1L (large subunit of L.donovani topoisomerase I) and HTOP14 were able to reconstitute topoisomerase I activity when mixed in vitro. This unusual enzyme, ‘LeishMan’ topoisomerase I (Leish for Leishmania and Man for human) exhibits less efficiency in DNA binding and strand passage compared with LdTOP1L/S. Fusion of LdTOP1L with HTOP14 yielded a more efficient enzyme with greater affinity for DNA and faster strand passage ability. Both the chimeric enzymes are less sensitive to camptothecin than LdTOP1L/S. Restoration of topoisomerase I activity by LdTOP1L and HTOP14 suggests that the small subunit of L.donovani topoisomerase I is primarily required for supplying the catalytic tyrosine. Moreover, changes in the enzyme properties due to substitution of LdTOP1S with HTOP14 indicate that the small subunit contributes to subunit interaction and catalytic efficiency of the enzyme

    Fluorescence-resonance-energy-transfer-based assay to estimate modulation of TDP1 activity through arginine methylation

    Get PDF
    Summary: Tyrosyl DNA phosphodiesterase (TDP1) is a DNA repair enzyme that hydrolyzes the phosphotyrosyl linkage between 3′-DNA-protein crosslinks such as stalled topoisomerase 1 cleavage complexes (Top1cc). Here, we present a fluorescence-resonance-energy-transfer-(FRET) based assay to estimate modulation of TDP1 activity through arginine methylation. We describe steps for TDP1 expression and purification and estimating TDP1 activity using fluorescence-quenched probes mimicking Top1cc. We then detail data analysis of real-time TDP1 activity and screening of TDP1-selective inhibitors.For complete details on the use and execution of this protocol, please refer to Bhattacharjee et al. (2022).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Leishmania donovani: Intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells

    No full text
    Leishmaniasis presents a spectrum of diseases ranging from benign cutaneous lesions to the often-fatal visceralizing form. Luteolin, a dietary flavone induces apoptosis-like death in both promastigote and amastigote forms of Leishmania, the causative agent of the diseases. Here, we have elucidated the mechanism of action of luteolin by analyzing the mitochondrial and cytosolic changes associated with apoptosis-like death of leishmanial cells. In Leishmania donovani, treatment with luteolin induces the loss of both maxicircles and minicircles which resulted in the formation of dyskinetoplastid cells. The loss of mitochondrial DNA causes reduction in the activities of complex I, II, III, and IV of electron transport chain. However, the mitochondrial ATPase activity of complex V remains almost unaltered during treatment with luteolin but the sensitivity to oligomycin is lost. The inactivation of ETC complex is associated with decrease in mitochondrial as well as glycolytic ATP production, which is responsible for depolarization of ΔΨ<SUB>m</SUB> and alteration in mitochondrial structure. This event is followed by the release of cytochrome c from mitochondria in mt-DNA depleted leishmanial cells and causes an activation of caspase like proteases. Collectively our results provide the first insight into the mechanistic pathway of apoptosis-like death where inhibition of glycolytic ATP production is an essential event responsible for depolarization of ΔΨ<SUB>m</SUB> in mt-DNA depleted cells to propagate apoptosis-like death in leishmanial cells

    Leishmania Donovani: Dyskinetoplastid Cells Survive and Proliferate in the Presence of Pyruvate and Uridine but do not Undergo Apoptosis after Treatment with Camptothecin.

    No full text
    We have shown that treatment with luteolin in leishmanial cells causes loss of mt-DNA and induces apoptosis through mitochondria dependent pathway [Sen, N., Das, B.B., Ganguly, A., Banerjee, B., Sen, T., Majumder, H.K., 2006. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. Experimental Parasitology, in press]. Here, we report that mitochondrial DNA depleted leishmanial cells require exogenous sources of pyruvate and uridine to survive and proliferate. The presence of pyruvate and uridine in a growing media help them to produce suYcient amount of glycolytic ATP to maintain the mitochondrial membrane potential in the absence of their functional ETC. Treatment of wild type cells with CPT causes generation of ROS that leads to apoptosis. But unlike the normal cells ROS was not generated in these mt-DNA depleted cells after treatment with CPT. Taken together we have shown for the Wrst time that dyskinetoplastid cells are auxotrophic for pyruvate and uridine and apoptosis cannot be induced in these cells in the presence of CPT. Therefore, the presence of mitochondrial DNA is absolutely necessary for the cytotoxicity of CPT in kinetoplastid parasites

    Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway.

    No full text
    Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed

    Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism.

    Get PDF
    Mitochondria contain their own DNA genome (mtDNA), as well as specific DNA replication and protein synthesis machineries. Relaxation of the circular, double-stranded mtDNA relies on the presence of topoisomerase activity. Three different topoisomerases have been identified in mitochondria: Top1mt, Top3α and a truncated form of Top2β.The present study shows the importance of Top1mt in mitochondrial homeostasis. Here we show that Top1mt-/- murine embryonic fibroblasts (MEF) exhibit dysfunctional mitochondrial respiration, which leads decreased ATP production and compensation by increased glycolysis and fatty acid oxidation. ROS production in Top1mt-/- MEF cells is involved in nuclear DNA damage and induction of autophagy. Lack of Top1mt also triggers oxidative stress and DNA damage associated with lipid peroxidation and mitophagy in Top1mt-/- mice.Together, our data implicate Top1mt for mitochondrial integrity and energy metabolism. The compensation mechanism described here contributes to the survival of Top1mt-/- cells and mice despite alterations of mitochondrial functions and metabolism. Therefore, this study supports a novel model for cellular adaptation to mitochondrial damage

    Amino acids 39–456 of the Large Subunit and 210–262 of the Small Subunit Constitute the Minimal Functionally Interacting Fragments of the Unusual heterodimeric topoisomerase IB of Leishmania

    No full text
    The unusual, heterodimeric topoisomerase IB of Leishmania shows functional activity upon reconstitution of the DNA-binding large subunit (LdTOPIL; or L) and the catalytic small subunit (LdTOPIS; or S). In the present study, we generated N- and Cterminal- truncated deletion constructs of either subunit and identified proteins LdTOPIL39−456 (lacking amino acids 1–39 and 457–635) and LdTOPIS210−262 (lacking amino acids 1–210) as the minimal interacting fragments. The interacting region of LdTOPIL lies between residues 40–99 and 435–456, while for LdTOPIS it lies between residues 210–215 and 245–262. The heterodimerization between the two fragments is weak and therefore co-purified fragments showed reduced DNA binding, cleavage and relaxation properties compared with the wild type enzyme. The minimal fragments could complement their respective wild-type subunits inside parasites when the respective subunits were down-regulated by transfection with conditional antisense constructs. Site-directed mutagenesis studies identify Lys455 of LdTOPIL and Asp261 of LdTOPIS as two residues involved in subunit interaction. Taken together, the present study provides crucial insights into the mechanistic details for understanding the unusual structure and inter-subunit cooperativity of this heterodimeric enzyme
    corecore