12 research outputs found

    In Vitro Antibacterial Activity of Two Medicinal Plants against Bovine Udder Isolated Bacterial Pathogens from Dairy Herds

    Get PDF
    Bovine mastitis continues to be the most costly disease to the dairy farmers. In Tamil Nadu dominates as one of the most prevalent diseases in dairy cattle among the dairy farms. Mastitis treatment with antibiotics leads to the development of antibiotic resistant strains and consumer health problem. The present study is an in vitro antibacterial activity of two medicinal plants against bovine udder isolated bacterial pathogens. Aqueous and methanol extracts of two plants were investigated by agar disc and well-diffusion method. Methanol extracts of Tridax procumbens and Spathodea campanulata showed significant activity against coagulase positive Staphylococcus aureus (8.0 ± 0.70) and Streptococcus agalactiae (7.6 ± 0.54) respectively. Phytochemical screening of the plants revealed the presence of alkaloids, tannin, saponin, steroids, terpenoids and falvonoids

    Phytochemical Screening and Antibacterial Activity of Aqueous and Methanolic Leaf Extracts of Two Medicinal Plants against Bovine Mastitis Bacterial Pathogens

    Get PDF
    Spathodea campanulata P. Beauv is extensively used in Indian traditional and folklore medicines to cure various human ailments. Tridax procumbens Linn is a tropically distributed medicinal plant. Antimicrobial activity of aqueous and methanol extracts of two plants were investigated by agar disc and well-diffusion method against bovine mastitis bacterial pathogens. The plant extracts showed inhibitory activity against the tested organisms. Phytochemical screening of the plant revealed the presence of tannins, flavonoids, saponins and alkaloids. The study scientifically validates the use of plant in traditional and ethnoveterinary medicine

    Fine mapping and sequence analysis reveal a promising candidate gene encoding a novel NB-ARC domain derived from wild rice (Oryza officinalis) that confers bacterial blight resistance

    Get PDF
    Bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious constraints in rice production. The most sustainable strategy to combat the disease is the deployment of host plant resistance. Earlier, we identified an introgression line, IR 75084-15-3-B-B, derived from Oryza officinalis possessing broad-spectrum resistance against Xoo. In order to understand the inheritance of resistance in the O. officinalis accession and identify genomic region(s) associated with resistance, a recombinant inbred line (RIL) mapping population was developed from the cross Samba Mahsuri (susceptible to bacterial blight) × IR 75084-15-3-B-B (resistant to bacterial blight). The F2 population derived from the cross segregated in a phenotypic ratio of 3: 1 (resistant susceptible) implying that resistance in IR 75084-15-3-B-B is controlled by a single dominant gene/quantitative trait locus (QTL). In the F7 generation, a set of 47 homozygous resistant lines and 47 homozygous susceptible lines was used to study the association between phenotypic data obtained through screening with Xoo and genotypic data obtained through analysis of 7K rice single-nucleotide polymorphism (SNP) chip. Through composite interval mapping, a major locus was detected in the midst of two flanking SNP markers, viz., Chr11.27817978 and Chr11.27994133, on chromosome 11L with a logarithm of the odds (LOD) score of 10.21 and 35.93% of phenotypic variation, and the locus has been named Xa48t. In silico search in the genomic region between the two markers flanking Xa48t identified 10 putatively expressed genes located in the region of interest. The quantitative expression and DNA sequence analysis of these genes from contrasting parents identified the Os11g0687900 encoding an NB-ARC domain-containing protein as the most promising gene associated with resistance. Interestingly, a 16-bp insertion was noticed in the untranslated region (UTR) of the gene in the resistant parent, IR 75084-15-3-B-B, which was absent in Samba Mahsuri. The association of Os11g0687900 with resistance phenotype was further established by sequence-based DNA marker analysis in the RIL population. A co-segregating PCR-based INDEL marker, Marker_Xa48, has been developed for use in the marker-assisted breeding of Xa48t

    ASSESSMENT OF HEMATOLOGICAL INDICES AMONG WORKERS IN SILVER JEWELRY UNITS

    No full text
      Objective: Workers in the silver jewelry manufacturing units are exposed to heavy metals and toxic compounds during manufacturing. Hence, the present study aimed to assess the hematological indices among the workers in silver jewelry manufacturing units.Methods: A cross-sectional study was conducted in various silver jewelry manufacturing units located in Coimbatore, Tamil Nadu. One hundred and forty eight exposed and 35 unexposed (control) participants were included in this study. Their hematological indices were assessed.Results: There was significant (p<0.05) increase of serum silver (Ag) and hematological profile such as red blood cell (RBC), hematocrit, and the hemoglobin levels of exposure groups (B, C, D, and E) were found to be significantly decreased (p<0.05) compared to control group (A). There was also significant increase (p<0.05) in differential count and mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet (PLT), platelet distribution width (PDW), and mean platelet volume (MPV) levels in exposed groups (B, C, D, and E) than controls (A).Conclusion: Decrease in RBC indices and the increased differential count of MCH, MCHC, PLT, PDW, and MPV levels might be due to the exposure to Ag in the jewelry units. In view of these results, it appears that ionized Ag induces hematological disturbances and the present study clearly establish that there were minimal negative effects of Ag exposure on hematological indices

    Not Available

    No full text
    Not AvailableThe study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23–22.76% of the phenotypic variance with LOD scores range of 6.5–10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybridsDST INSPIRE Grant no. DST/INSPIRE Fellowship/2013/1146SERB-NPDF Scheme (Grant: PDF/2016/000374

    Not Available

    No full text
    Not AvailableA doubled haploid (DH) population consisting of 125 DHLs derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R) was utilized for Quantitative Trait Loci (QTL) mapping to identify novel genomic regions associated with yield related traits. A genetic map was constructed with 126 polymorphic SSR and EST derived markers, which were distributed across rice genome. QTL analysis using inclusive composite interval mapping (ICIM) method identified a total of 24 major and minor effect QTLs. Among them, twelve major effect QTLs were identified for days to fifty percent flowering (qDFF12-1), total grain yield/plant (qYLD3-1 and qYLD6-1), test (1,000) grain weight (qTGW6-1 and qTGW7-1), panicle weight (qPW9-1), plant height (qPH12-1), flag leaf length (qFLL6-1), flag leaf width (qFLW4-1), panicle length (qPL3-1 and qPL6-1) and biomass (qBM4-1), explaining 29.95–56.75% of the phenotypic variability with LOD scores range of 2.72–16.51. Chromosomal regions with gene clusters were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1) and on chromosome 6 for total grain yield/plant (qYLD6-1), flag leaf length (qFLL6-1) and panicle length (qPL6-1). Majority of the QTLs identified were observed to be co-localized with the previously reported QTL regions. Five novel, major effect QTLs associated with panicle weight (qPW9-1), plant height (qPH12-1), flag leaf width (qFLW4-1), panicle length (qPL3-1) and biomass (qBM4-1) and three novel minor effect QTLs for panicle weight (qPW3-1 and qPW8-1) and fertile grains per panicle (qFGP5-1) were identified. These QTLs can be used in breeding programs aimed to yield improvement after their validation in alternative populations.Not Availabl

    Not Available

    No full text
    Not AvailableMTU 1010 is a high-yielding mega-variety of rice grown extensively in India. However, it does not perform well in soils with low phosphorus (P) levels. With an objective to improve MTU 1010 for tolerance to low soil P, we have transferred Pup1, a major quantitative trait locus (QTL) associated with tolerance from another mega-variety, Swarna, through marker-assisted backcross breeding (MABB). Foreground selection of the F1 and backcross plants was performed with the co-dominant, closely linked CAPS marker, K20-2, while two flanking markers RM28011 and RM28157 were utilized for recombinant selection. At each backcross generation, positive plants were also analyzed with a set of 85 parental polymorphic SSR markers to identify the QTL-positive plants possessing maximum introgression of MTU 1010 genome. At BC2F1, the best backcross plant was selfed to generate BC2F2s. Among them, the plants homozygous for Pup1 (n = 22) were reconfirmed using the functional marker for Pup1, viz., K46-1, and they were advanced through pedigree method of selection until BC2F6 generation. A total of five elite BC2F6 lines, possessing Pup1 and phenotypically similar to MTU 1010, were screened in the low soil P plot and normal plot (with optimum soil P levels) during wet season, 2016. All the selected lines showed better performance under low P soil with more number of productive tillers, better root system architecture, and significantly higher yield (> 390%) as compared to MTU 1010. Further, under normal soil, the lines were observed to be similar to or better than MTU 1010 for most of the agro-morphological traits and yield. This study represents the successful application of marker-assisted selection for improvement of tolerance to low soil P in a high-yielding Indian rice variety.Not Availabl
    corecore