77 research outputs found

    Simulation study evaluating alternative initial responses to formation fluid influx during managed pressure drilling

    Get PDF
    Managed pressure drilling is an innovative technique to precisely manage wellbore pressure. It is particularly applicable for reducing the risk of a kick or lost returns when drilling with a narrow window between pore pressure and fracture pressure. The constant bottomhole pressure method of managed pressure drilling uses annular frictional pressure and choke pressure in addition to mud hydrostatic pressure to achieve precise wellbore pressure control. This project investigated alternative initial responses to kicks to determine which would be most effective and reliable under different well scenarios when applying the constant bottomhole pressure method of managed pressure drilling. Three different initial responses to a kick, \u27shut-in the well,\u27 \u27apply back pressure\u27 and \u27increase mud pump rate\u27 were studied using an interactive transient multiphase flow simulator. The kick scenarios were varied by changing the hole size, type of kick fluid, initial kick volume, pressure differential at the kick zone, and fracture injectivity index. No single best response was identified for the kick scenarios that were studied. Nevertheless, some conclusions were reached. The validity of these conclusions may be limited to the range of scenarios studied. \u27Increasing mud pump rate\u27 is advantageous when it increases bottomhole pressure enough to stop formation flow because it results in the minimum casing and shoe pressures. Therefore, it should minimize the risk of lost returns or surface equipment failure. However, it is unlikely to be successful in large hole sizes. The \u27apply back pressure\u27 response has a similar but smaller advantage versus the \u27shut-in\u27 option because circulation creates friction in the annulus. However, in cases where lost returns occurred, no reliable way of identifying the loss of returns and avoiding unintentional formation flow to the surface was defined. The \u27shut-in\u27 reaction generally results in the highest casing and casing shoe pressures. Therefore, it may be most likely to cause loss of returns before stopping formation flow and consequently causing an underground transfer with continuous influx. Nevertheless, it is probably the least likely to unintentionally allow formation fluid flow to the surface or to cause loss of significant mud volume downhole

    Ribonucleic acid polymerase from eukaryotic cells: effects of factors and rifampicin on the activity of RNA polymerase from chromatin of coconut nuclei

    Get PDF
    The role of protein factor B and C on RNA synthesis by RNA polymerase CI isolated from chromosomal non-histone proteins of coconut nuclei has been studied further. Factor B has been implicated as the initiation factor on the experimental evidences that (a) in its absence, RNA polymerase CI shows only minimal activity; (b) it can bind with RNA polymerase and the enzyme . factor B complex then binds to DNA, but factor B alone can not bind to DNA; (c) it promotes the incorporation of [β,-32P2]ATP into RNA and this stimulation reaches a plateau rather quickly while the incorporation of [14C]ATP in the interior of RNA chain continues; (d) it is active with native homologous DNA as template, but not with denatured or λ DNA; (e) RNA molecules synthesized in its presence are of higher sedimentation value (10-20 S) than that synthesized in its absence (4 S); (f) it can completely counteract the inhibitory effect of rifampicin, which is known to inhibit RNA synthesis at the initiation step. Factor C seems to facilitate the release of synthesized RNA from the DNA template since (a) it stimulates RNA synthesis by polymerase CI when added on top of factor B, but in absence of factor B, C alone is inactive; (b) it can reinitiate RNA synthesis after the reaction has reached a plateau in a system where DNA is limiting, an affect similar to that obtained at higher ionic strength. Factor C, however, does not influence the molecular size of RNA synthesized. Furthermore, the RNA polymerase CI is sensitive to α-amanitin whereas the RNA polymerase CII is comparatively resistant. The former appears to synthesize the non-ribosomal RNA whereas the latter synthesizes ribosomal RNA

    Elliptic flow of thermal dileptons as a probe of QCD matter

    Full text link
    We study the variation of elliptic flow of thermal dileptons with transverse momentum and invariant mass of the pairs for Pb+Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV. The dilepton productions from quark gluon plasma (QGP) and hot hadrons have been considered including the spectral change of light vector mesons in the thermal bath. The space time evolution has been carried out within the frame work of 2+1 dimensional ideal hydrodynamics with lattice+hadron resonance gas equation of state. We find that a judicious selection of invariant mass(M) and transverse momentum (p_T) windows can be used to extract the collective properties of quark matter, hadronic matter and also get a distinct signature of medium effects on vector mesons. Our results indicate a reduction of elliptic flow (v_2) for M beyond phi mass, which if observed experimentally would give the measure of v_2 of the partonic phase.Comment: To appear in Phys. Rev. C (Rapid Comm.

    N-acetylglucosamine (GlcNAc-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans

    Get PDF
    Candida albicans is an opportunistic fungal pathogen that resides in the human body as a commensal and can turn pathogenic when the host is immunocompromised. Adaptation of C. albicans to host niche-specific conditions is important for the establishment of pathogenicity, where the ability of C. albicans to utilize multiple carbon sources provides additional flexibility. One alternative sugar is N-acetylglucosamine (GlcNAc), which is now established as an important carbon source for many pathogens and can also act as a signaling molecule. Although GlcNAc catabolism has been well studied in many pathogens, the importance of several enzymes involved in the formation of metabolic intermediates still remains elusive. In this context, microarray analysis was carried out to investigate the transcriptional responses induced by GlcNAc under different conditions. A novel gene that was highly upregulated immediately following the GlcNAc catabolic genes was identified and was named GIG2 (GlcNAc-induced gene 2). This gene is regulated in a manner distinct from that of the GlcNAc-induced genes described previously in that GlcNAc metabolism is essential for its induction. Furthermore, this gene is involved in the metabolism of N-acetylneuraminate (sialic acid), a molecule equally important for initial host-pathogen recognition. Mutant cells showed a considerable decrease in fungal burden in mouse kidneys and were hypersensitive to oxidative stress conditions. Since GIG2 is also present in many other fungal and enterobacterial genomes, targeted inhibition of its activity would offer insight into the treatment of candidiasis and other fungal or enterobacterial infections

    Forward Genetic Dissection of Biofilm Development by Fusobacterium nucleatum: Novel Functions of Cell Division Proteins FtsX and EnvC.

    Get PDF
    Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the ΔftsX and ΔenvC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of ΔftsX and ΔenvC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated.IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum, due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the ΔftsX and ΔenvC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen

    Enhancing livelihoods in farming communities through super-resolution agromet advisories using advanced digital agriculture technologies

    Get PDF
    Agricultural production in India is highly vulnerable to climate change. Transformational change to farming systems is required to cope with this changing climate to maintain food security, and ensure farming to remain economically viable. The south Asian rice-fallow systems occupying 22.3 million ha with about 88% in India, mostly (82%) concentrated in the eastern states, are under threat. These systems currently provide economic and food security for about 11 million people, but only achieve 50% of their yield potential. Improvement in productivity is possible through efficient utilization of these fallow lands. The relatively low production occurs because of sub-optimal water and nutrient management strategies. Historically, the Agro-met advisory service has assisted farmers and disseminated information at a district-level for all the states. In some instances, Agro-met delivers advice at the block level also, but in general, farmers use to follow the district level advice and develop an appropriate management plan like land preparation, sowing, irrigation timing, harvesting etc. The advisories are generated through the District Agrometeorology Unit (DAMU) and Krishi Vigyan Kendra (KVK) network, that consider medium-range weather forecast. Unfortunately, these forecasts advisories are general and broad in nature for a given district and do not scale down to the individual field or farm. Farmers must make complex crop management decisions with limited or generalised information. The lack of fine scale information creates uncertainty for farmers, who then develop risk-averse management strategies that reduce productivity. It is unrealistic to expect the Agro-met advisory service to deliver bespoke information to every farmer and to every field simply with the help of Kilometre-scale weather forecast. New technologies must be embraced to address the emerging crises in food security and economic prosperity. Despite these problems, Agro-met has been successful. New digital technologies have emerged though, and these digital technologies should become part of the Agro-met arsenal to deliver valuable information directly to the farmers at the field scale. The Agro-met service is poised to embrace and deliver new interventions through technology cross-sections such as satellite remote sensing, drone-based survey, mobile based data collection systems, IoT based sensors, using insights derived from a hybridisation of crop and AIML (Artificial Intelligence and Machine Learning) models. These technological advancements will generate fine-scale static and dynamic Agro-met information on cultivated lands, that can be delivered through Application Programming Interface (APIs) and farmers facing applications. We believe investment in this technology, that delivers information directly to the farmers, can reverse the yield gap, and address the negative impacts of a changing climate

    Circulation characteristics of horseshoe vortex in scour region around circular piers

    No full text
    This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes ±3 cm away from the plane of symmetry (y = ±3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = −3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies
    • …
    corecore