11 research outputs found

    Lack of common TCRA and TCRB clonotypes in CD8+/ TCRαβ+ T-cell large granular lymphocyte leukemia: A review on the role of antigenic selection in the immunopathogenesis of CD8+ T-LGL

    Get PDF
    Clonal CD8 +/T-cell receptor (TCR)αβ+ T-cell large granular lymphocyte (T-LGL) proliferations constitute the most common subtype of T-LGL leukemia. Although the etiology of T-LGL leukemia is largely unknown, it has been hypothesized that chronic antigenic stimulation contributes to the pathogenesis of this disorder. In the present study, we explored the association between expanded TCR-Vβ and TCR-V clonotypes in a cohort of 26 CD8 +/TCRαβ + T-LGL leukemia patients, in conjunction with the HLA-ABC genotype, to find indications for common antigenic stimuli. In addition, we applied purpose-built sophisticated computational tools for an in-depth evaluation of clustering of TCRβ (TCRB) complementarity determining region 3 (CDR3) amino-acid LGL clonotypes. We observed a lack of clear TCRA and TCRB CDR3 homology in CD8 +/ TCRαβ + T-LGL, with only low level similarity between small numbers of cases. This is in strong contrast to the homology that is seen in CD4 +/TCRβ + T-LGL and TCRγδ + T-LGL and thus underlines the idea that the LGL types have different etiopathogenesis. The heterogeneity of clonal CD8 +/ TCRαβ + T-LGL proliferations might in fact suggest that multiple pathogens or autoantigens are involved

    The presence of CLL-associated stereotypic B cell receptors in the normal BCR repertoire from healthy individuals increases with age

    Get PDF
    __Background:__ Aging is known to induce immunosenescence, resulting in alterations in both the innate and adaptive immune system. Here we evaluated the effects of aging on B cell subsets in peripheral blood of 155 immunologically healthy individuals in four age categories (range 20-95y) via multi-parameter flow cytometry. Furthermore, we studied the naive and antigen-experienced B cell receptor (BCR) repertoire of different age groups and compared it to the clonal BCR repertoire of chronic lymphocytic leukemia (CLL), a disease typically presenting in elderly individuals. __Results:__ Total num

    Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS

    Get PDF
    One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics

    The presence of CLL-associated stereotypic B cell receptors in the normal BCR repertoire from healthy individuals increases with age

    Get PDF
    Background: Aging is known to induce immunosenescence, resulting in alterations in both the innate and adaptive immune system. Here we evaluated the effects of aging on B cell subsets in peripheral blood of 155 immunologically healthy individuals in four age categories (range 20-95y) via multi-parameter flow cytometry. Furthermore, we studied the naive and antigen-experienced B cell receptor (BCR) repertoire of different age groups and compared it to the clonal BCR repertoire of chronic lymphocytic leukemia (CLL), a disease typically presenting in elderly individuals. Results: Total numbers and relative frequencies of B cells were found to decline upon aging, with reductions in transitional B cells, memory cell types, and plasma blasts in the 70 + y group. The BCR repertoire of naive mature B cells and antigen-experienced B cells did not clearly alter until age 70y. Clear changes in IGHV gene usage were observed in naive mature B cells of 70 + y individuals, with a transitional pattern in the 50-70y group. IGHV gene usage of naive mature B cells of the 50-70y, but not the 70 + y, age group resembled that of both younger (50-70y) and older (70 + y) CLL patients. Additionally, CLL-associated stereotypic BCR were found as part of the healthy control BCR repertoire, with an age-associated increase in frequency of several stereotypic BCR (particularly subsets #2 and #5). Conclusion: Composition of the peripheral B cell compartment changes with ageing, with clear reductions in non-switched and CD27 + IgG+ switched memory B cells and plasma blasts in especially the 70 + y group. The BCR repertoire is relatively stable until 70y, whereafter differences in IGHV gene usage are seen. Upon ageing, an increasing trend in the occurrence of particular CLL-associated stereotypic BCR is observed

    The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL

    No full text
    The cell of origin of chronic lymphocytic leukemia (CLL) has long been sought, and immunoglobulin gene analysis provides new clues. In the unmutated subset (U-CLL), there is increased usage of the 51p1-related alleles of the immunoglobulin heavy chain variable 1-69 gene, often combined with selected genes and with immunoglobulin heavy chain diversity IGHJ6. Stereotypic characteristics of the HCDR3 result and suggest antigen selection of the leukemic clones. We have now analyzed 51p1/IGHJ6 combinations in normal blood B cells from 3 healthy persons for parallel sequence patterns. A high proportion (33.3% of sequences) revealed stereotypic patterns, with several (15.0%) being similar to those described in U-CLL. Previously unreported CLL-associated stereotypes were detected in 4.8%. Stereotypes (13.6%) not detected in CLL also were found. The HCDR2-IGHJ6 sequences were essentially unmutated. Junctional amino acids in normal B cells were heterogeneous, as in cases of stereotyped CLL. Phenotypically, normal B cells expressing 51p1-derived immunoglobulin M were naive. This snapshot of the naive B-cell repertoire reveals subsets of B cells closely related to those characteristic of CLL. Conserved patterns in the 51p1-encoded immunoglobulin M of normal B cells suggest a restricted sequence repertoire shaped by evolution to recognize common pathogens. Proliferative pressure on these cells is the likely route to U-CLL

    Temporal dynamics of clonal evolution in chronic lymphocytic leukemia with stereotyped IGHV4-34/IGKV2-30 antigen receptors:longitudinal immunogenetic evidence

    No full text
    Chronic lymphocytic leukemia (CLL) patients assigned to stereotyped subset 4 possess distinctive patterns of intraclonal diversification (ID) within their immunoglobulin (IG) genes. Although highly indicative of an ongoing response to antigen(s), the critical question concerning the precise timing of antigen involvement is unresolved. Hence, we conducted a large-scale longitudinal study of eight subset 4 cases totaling 511 and 398 subcloned IG heavy and kappa sequences. Importantly, we could establish a hierarchical pattern of subclonal evolution, thus revealing which somatic hypermutations were negatively or positively selected. In addition, distinct clusters of subcloned sequences with cluster-specific mutational profiles were observed initially; however, at later time points, the minor cluster had often disappeared and hence not been selected. Despite the high intensity of ID, it was remarkable that certain residues remained essentially unaltered. These novel findings strongly support a role for persistent antigen stimulation in the clonal evolution of CLL subset 4
    corecore