55 research outputs found

    TRPV4 and KCa functionally couple as osmosensors in the PVN

    Get PDF
    BACKGROUND AND PURPOSE: Transient receptor potential vanilloid type 4 (TRPV4) and calcium-activated potassium channels (KCa ) mediate osmosensing in many tissues. Both TRPV4 and KCa channels are found in the paraventricular nucleus (PVN) of the hypothalamus, an area critical for sympathetic control of cardiovascular and renal function. Here, we have investigated whether TRPV4 channels functionally couple to KCa channels to mediate osmosensing in PVN parvocellular neurones and have characterized, pharmacologically, the subtype of KCa channel involved. EXPERIMENTAL APPROACH: We investigated osmosensing roles for TRPV4 and KCa channels in parvocellular PVN neurones using cell-attached and whole-cell electrophysiology in mouse brain slices and rat isolated PVN neurons. Intracellular Ca(2+) was recorded using Fura-2AM. The system was modelled in the NEURON simulation environment. KEY RESULTS: Hypotonic saline reduced action current frequency in hypothalamic slices; a response mimicked by TRPV4 channel agonists 4αPDD (1 μM) and GSK1016790A (100 nM), and blocked by inhibitors of either TRPV4 channels (RN1734 (5 μM) and HC067047 (300 nM) or the low-conductance calcium-activated potassium (SK) channel (UCL-1684 30 nM); iberiotoxin and TRAM-34 had no effect. Our model was compatible with coupling between TRPV4 and KCa channels, predicting the presence of positive and negative feedback loops. These predictions were verified using isolated PVN neurons. Both hypotonic challenge and 4αPDD increased intracellular Ca(2+) and UCL-1684 reduced the action of hypotonic challenge. CONCLUSIONS AND IMPLICATIONS: There was functional coupling between TRPV4 and SK channels in parvocellular neurones. This mechanism contributes to osmosensing in the PVN and may provide a novel pharmacological target for the cardiovascular or renal systems

    Signalling 2013: from Structure to Function 89 cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP)

    Get PDF
    Abstract The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation

    The Role of the Membrane Potential in Chondrocyte Volume Regulation

    Get PDF
    Many cell types have significant negative resting membrane potentials (RMPs) resulting from the activity of potassium-selective and chloride-selective ion channels. In excitable cells, such as neurones, rapid changes in membrane permeability underlie the generation of action potentials. Chondrocytes have less negative RMPs and the role of the RMP is not clear. Here we examine the basis of the chondrocyte RMP and possible physiological benefits. We demonstrate that maintenance of the chondrocyte RMP involves gadolinium-sensitive cation channels. Pharmacological inhibition of these channels causes the RMP to become more negative (100 µM gadolinium: ΔVm = −30 ± 4 mV). Analysis of the gadolinium-sensitive conductance reveals a high permeability to calcium ions (PCa/PNa ≈80) with little selectivity between monovalent ions; similar to that reported elsewhere for TRPV5. Detection of TRPV5 by PCR and immunohistochemistry and the sensitivity of the RMP to the TRPV5 inhibitor econazole (ΔVm = −18 ± 3 mV) suggests that the RMP may be, in part, controlled by TRPV5. We investigated the physiological advantage of the relatively positive RMP using a mathematical model in which membrane stretch activates potassium channels allowing potassium efflux to oppose osmotic water uptake. At very negative RMP potassium efflux is negligible, but at more positive RMP it is sufficient to limit volume increase. In support of our model, cells clamped at −80 mV and challenged with a reduced osmotic potential swelled approximately twice as much as cells at +10 mV. The positive RMP may be a protective adaptation that allows chondrocytes to respond to the dramatic osmotic changes, with minimal changes in cell volume. J. Cell. Physiol. 226: 2979–2986, 2011. © 2011 Wiley-Liss, Inc

    The PSD95–nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death

    Get PDF
    The stress-activated protein kinase p38 and nitric oxide (NO) are proposed downstream effectors of excitotoxic cell death. Although the postsynaptic density protein PSD95 can recruit the calcium-dependent neuronal NO synthase (nNOS) to the mouth of the calcium-permeable NMDA receptor, and depletion of PSD95 inhibits excitotoxicity, the possibility that selective uncoupling of nNOS from PSD95 might be neuroprotective is unexplored. The relationship between excitotoxic stress–generated NO and activation of p38, and the significance of the PSD95–nNOS interaction to p38 activation also remain unclear. We find that NOS inhibitors reduce both glutamate-induced p38 activation and the resulting neuronal death, whereas NO donor has effects consistent with NO as an upstream regulator of p38 in glutamate-induced cell death. Experiments using a panel of decoy constructs targeting the PSD95–nNOS interaction suggest that this interaction and subsequent NO production are critical for glutamate-induced p38 activation and the ensuing cell death, and demonstrate that the PSD95–nNOS interface provides a genuine possibility for design of neuroprotective drugs with increased selectivity

    Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells.

    Get PDF
    ATP-sensitive potassium (KATP) channels couple cellular metabolism to excitability, making them ideal candidate sensors for hypoxic vasodilation. However, it is still unknown whether cellular nucleotide levels are affected sufficiently to activate vascular KATP channels during hypoxia. To address this fundamental issue, we measured changes in the intracellular ATP:ADP ratio using the biosensors Perceval/PercevalHR, and membrane potential using the fluorescent probe DiBAC4(3) in human coronary artery smooth muscle cells (HCASMCs). ATP:ADP ratio was significantly reduced by exposure to hypoxia. Application of metabolic inhibitors for oxidative phosphorylation also reduced ATP:ADP ratio. Hyperpolarization caused by inhibiting oxidative phosphorylation was blocked by either 10 µM glibenclamide or 60 mM K+. Hyperpolarization caused by hypoxia was abolished by 60 mM K+ but not by individual K+ channel inhibitors. Taken together, these results suggest hypoxia causes hyperpolarization in part by modulating K+ channels in SMCs

    Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data

    Get PDF
    Single-molecule research techniques such as patch-clamp electrophysiology deliver unique biological insight by capturing the movement of individual proteins in real time, unobscured by whole-cell ensemble averaging. The critical first step in analysis is event detection, so called “idealisation”, where noisy raw data are turned into discrete records of protein movement. To date there have been practical limitations in patch-clamp data idealisation; high quality idealisation is typically laborious and becomes infeasible and subjective with complex biological data containing many distinct native single-ion channel proteins gating simultaneously. Here, we show a deep learning model based on convolutional neural networks and long short-term memory architecture can automatically idealise complex single molecule activity more accurately and faster than traditional methods. There are no parameters to set; baseline, channel amplitude or numbers of channels for example. We believe this approach could revolutionise the unsupervised automatic detection of single-molecule transition events in the future

    Calmodulin variant E140G associated with long QT syndrome impairs CaMKIIδ autophosphorylation and L-type calcium channel inactivation

    Get PDF
    Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM’s Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ

    Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel.

    Get PDF
    Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype

    The Importance of Pore-Forming Toxins in Multiple Organ Injury and Dysfunction

    Get PDF
    BackgroundMultiple organ injury and dysfunction often occurs in acute critical illness and adversely affects survival. However, in patients who survive, organ function usually recovers without permanent damage. It is, therefore, likely that there are reversible mechanisms, but this is poorly understood in the pathogenesis of multiple organ dysfunction syndrome (MODS).AimsBased on our knowledge of extracellular histones and pneumolysin, as endogenous and exogenous pore-forming toxins, respectively, here we clarify if the extent of cell membrane disruption and recovery is important in MODS.MethodsThis is a combination of retrospective clinical studies of a cohort of 98 patients from an intensive care unit (ICU) in a tertiary hospital, with interventional animal models and laboratory investigation.ResultsIn patients without septic shock and/or disseminate intravascular coagulation (DIC), circulating histones also strongly correlated with sequential organ failure assessment (SOFA) scores, suggesting their pore-forming property might play an important role. In vivo, histones or pneumolysin infusion similarly caused significant elevation of cell damage markers and multiple organ injury. In trauma and sepsis models, circulating histones strongly correlated with these markers, and anti-histone reagents significantly reduced their release. Comparison of pneumolysin deletion and its parental strain-induced sepsis mouse model showed that pneumolysin was not essential for sepsis development, but enhanced multiple organ damage and reduced survival time. In vitro, histones and pneumolysin treatment disrupt cell membrane integrity, resulting in changes in whole-cell currents and elevated intracellular Ca2+ to lead to Ca2+ overload. Cell-specific damage markers, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and cardiac troponin I (cTnI), were released from damaged cells. Once toxins were removed, cell membrane damage could be rapidly repaired and cellular function recovered.ConclusionThis work has confirmed the importance of pore-forming toxins in the development of MODS and proposed a potential mechanism to explain the reversibility of MODS. This may form the foundation for the development of effective therapies
    corecore