
ARTICLE

Deep-Channel uses deep neural networks to detect
single-molecule events from patch-clamp data
Numan Celik 1, Fiona O’Brien1, Sean Brennan1, Richard D. Rainbow 1, Caroline Dart1, Yalin Zheng1,

Frans Coenen2 & Richard Barrett-Jolley 1*

Single-molecule research techniques such as patch-clamp electrophysiology deliver unique

biological insight by capturing the movement of individual proteins in real time, unobscured

by whole-cell ensemble averaging. The critical first step in analysis is event detection, so

called “idealisation”, where noisy raw data are turned into discrete records of protein

movement. To date there have been practical limitations in patch-clamp data idealisation;

high quality idealisation is typically laborious and becomes infeasible and subjective with

complex biological data containing many distinct native single-ion channel proteins gating

simultaneously. Here, we show a deep learning model based on convolutional neural net-

works and long short-term memory architecture can automatically idealise complex single

molecule activity more accurately and faster than traditional methods. There are no para-

meters to set; baseline, channel amplitude or numbers of channels for example. We believe

this approach could revolutionise the unsupervised automatic detection of single-molecule

transition events in the future.
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Ion channels produce functional data in the form of electrical
currents, typically recorded with the Nobel Prize winning
patch-clamp electrophysiological technique1,2. The role of ion

channels in the generation of the nerve action potential was first
described in detail in the Nobel Prize winning work of Hodgkin
and Huxley3, but it is now known they sub-serve a wide range
of processes via control of the membrane potential4. Loss or
dysregulation of ion channels directly underlies many human and
non-human animal diseases (so called channelopathies); includ-
ing cardiovascular diseases such as LQT associated Sudden
Death5. The first step in analysing ion channel or other single
molecule data (which may, in fact, include several individual
“single” proteins) is to idealise the noisy raw data. This is typically
accomplished by human supervised threshold-crossing although
other human supervised methods are available6,7. This produces
time-series data with each time point binary classified as open or
closed; with more complex data this is a categorical classification
problem, with classifiers from zero to n channels open. Similar
data are also acquired from other single molecule techniques such
as lipid bilayer8 or single molecule FRET9–11. These data can then
be used to re-construct the hidden Markov stochastic models
underlying protein activity, using applications such as HJCFIT12,
QuB (SUNY, Buffalo13) or SPARTAN11. The initial idealisation
step, however, is well recognised by electrophysiologists as a time
consuming and labour-intensive bottleneck. This was perhaps
best summarised by Professors Sivilotti and Colquhoun FRS14

“[patch-clamp recording is] the oldest of the single molecule
techniques, but it remains unsurpassed [in] the time resolution
that can be achieved. It is the richness of information in these
data that allows us to study the behaviour of ion channels at a
level of detail that is unique among proteins. [BUT] This quality
of information comes at a price […]. Kinetic analysis is slow and
laborious, and its success cannot be guaranteed, even for channels
with “good signals”. In the current report we show that the
solution to these problems could be to apply the latest deep
learning methodology to analyse single channel patch-clamp
data. For straightforward research with manual patch-clamp
equipment, and in patches with only one or two channels active
at a time, it could be argued that the current methods are satis-
factory, however, from our own experience, many patches have
several channels gating simultaneously and need to be discarded,
wasting experimenter time and quite possibly, increasing the
numbers of animal donors required. Furthermore, several com-
panies have now developed automated, massively parallel, patch-
clamp machines15 that have the capacity to generate dozens or
even hundreds of simultaneous recordings. Use of this technology
for single channel recording is greatly compromised by limita-
tions with current software. For example, in most currently
available solutions the user has to set the number of channels in
the patch, the baseline and the size of the channel manually.
If there is baseline drift this would need to be corrected to achieve
acceptable results. Our vision is that new deep learning metho-
dology, could in the future make such analyses entirely plausible.

Deep learning16 is a machine-learning development that has
been used to extract features and/or detect objects from different
types of datasets for classification problems including base-calling
in single-molecule analysis17,18. Convolutional neural network
(CNN) layers are a powerful component of deep learning useful
for learning patterns within complex data. Two-dimensional (2D)
CNNs are most commonly applied to computer vision19–21, and
we have previously used them for automatic diagnosis of retinal
disease in images22. An adaptation of the 2D CNN is the one-
dimensional (1D) CNN. These have been specifically developed
to bring the power of the 2/3D CNN to frame-level classification
of time series, and have previously been used in nanopore time-
series single-molecule event classification23, but never previously

patch clamp data. More commonly, the deep learning archi-
tecture known as recurrent neural networks (RNNs) have been
applied to time series analyses24,25. General RNNs are a useful
model for text/speech classification and object detection in time
series data, however, the model begins degrading once output
information depends on long time scales due to a vanishing
gradient problem26. Long short-term memory (LSTM) networks,
are a type of RNN that resolve this problem27–29. While 1D-CNN
layers can effectively classify raw sequence data, in the current
work we combine these with LSTM units to improve the detec-
tion of learn long-term temporal relationships in time series
data30.

In theis current work, we introduce a hybrid recurrent CNN
(RCNN) model to idealise ion channel records, with up to five ion
channel events occurring simultaneously. To train and validate
models, we developed an analogue synthetic ion channel record
generator system and find that our Deep-Channel model, invol-
ving LSTM and CNN layers, rapidly and accurately idealises/
detects experimentally observed single molecule events without
need for human supervision. To our knowledge, this work is the
first deep learning model designed for the idealisation of patch-
clamp single molecule events.

Results
Benchmarking Deep-Channel event detection against human
supervised analyses. Our data generation workflow is illustrated
in Fig. 1a, c and our Deep-Channel architecture in Fig. 2.
In training and model development we found that whilst LSTM
models gave good performance, the combination with a time
distributed CNN gave increased performance (Supplementary
Table 1), a so called RCNN we call here Deep-Channel. After
training and model development (see Methods) we used 17 newly
generated datasets, previously unseen by Deep-Channel, and thus
uninvolved with the training process. Training performance
metrics are given in Supplementary Fig. 1. Authentic ion channel
data (Fig. 1b) were generated as described in the methods from
two kinetic schemes, the first; M1 (see Methods and Fig. 3a) with
low channel open probability, and the second; M2 with a high
open channel probability and thus an average of approximately
three channels open at a time (Fig. 3b). Across the datasets we
included data from both noisy, difficult to analyse signals and low
noise (high signal to ratio samples) as would be the case in any
patch-clamp project. Examples of these data, together with
ground truth and Deep-Channel idealisation are shown in Fig. 4.
Note that all the Deep-Channel results described in this paper
were achieved with a single deep learning model script [capacity
to detect a maximum of five channels] with no human inter-
vention required beyond giving the script the correct filename/
path. So, to clarify; there was no need to set baseline, channel
amplitude or number of channels present, etc.

In datasets where channels had a low opening probability (i.e.,
from model M1), the data idealisation process becomes close to
a binary detection problem (Fig. 4a), with ion channel events
type closed or open (labels “0” and “1”, respectively). In this
classification, the ROC area under the curve (AUC) for both open
and closed event detection exceeds 96% (Fig. 5, Tables 1 and 2).
Full data for a representative example experimental ROC is shown
in Fig. 5a, with the associated confusion matrix shown in Table 2.
Overall, in low open probability experiments, Deep-Channel
returned a macro-F1 of 97.1 ± 0.02% (standard deviation), n=
10, whereas the SKM method in QuB resulted a macro-F1 of 95.5
± 0.025%, and 50% threshold method in QuB gave a macro-F1 of
84.7 ± 0.05%, n= 10.

In cases where datasets included highly active channels (i.e.,
from model M2, Figs. 3c, d, 4b) this becomes a multi-class
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comparison problem and here, Deep-Channel outperformed both
50% threshold-crossing and SKM methods in QuB considerably.
The Deep-Channel macro-F1 for such events was 0.87 ± 0.07
(standard deviation), n= 7, however segmented-k means (SKM)
macro-F1 in QuB, without manual baseline correction, dropped
sharply to 0.57 ± 0.15, and 50% threshold-crossing macro-F1 fell
to 0.47 ± 0.37 (Student’s paired t test between methods, p=
0.0052). An example ROC for high activity channel detection, and
associated confusion matrix are shown in Fig. 5b and Table 3.
Frequently, in drug receptor or toxicity studies, biologists look for
changes in open probability and so we also compared the open
probability from manual threshold crossing, SKM and Deep-
Channel against ground truth (fiducial). In the presence of several
simultaneously opening channels in some quite noisy datasets
with baseline drift, careful manual 50% threshold crossing and
SKM sometimes essentially fail entirely, but Deep-Channel
continues to be successful. For example, in some experiments
with very noisy data, threshold crossing open probability
estimations were over 100% out and SKM detected only near
half of the open events (~50% accuracy). Nevertheless,
overall, there were highly significant correlations for both Deep-
Channel vs. ground truth (0.9998, 95% confidence intervals:
0.9996–0.9999, n= 17) and threshold crossing vs ground truth
(0.95, 95% confidence intervals: 0.87–0.98, n= 17). In terms of
speed, Deep-Channel consistently outperforms threshold cross-
ing. Deep-Channel analysed at the rate of approximately 10 s of
data recording in under 4 s of computational time, whereas

analysis time with threshold crossing in QuB was entirely
dependent on the complexity of the signal.

Deep-Channel also proved robust to different levels of signal-
to-noise ratios (SNR). For example, F1 scores in low, medium
and high SNR levels are: low (SNR= 5.35 ± 2.18, F1= 0.91 ±
0.016), medium (SNR= 12.74 ± 3.65, F1= 0.96 ± 0.011) and high
(SNR= 60 ± 4.52, F1= 0.98 ± 0.007).

Biological ion channel data testing metrics. As stated earlier, a
true Ground Truth is not possible with native ion channels sig-
nals recorded from biological membranes. However, with
straightforward clear signals such as that shown in Fig. 6, experts
can idealise these data with supervised methods. We therefore
chose a stretch of real data from31 including moderate level of
noise and drift (Fig. 6a). We then had five ion channel experts
idealise these data. For each of the (approx.) 880,000 time-points
we then took the mode of their binary idealisation value (0-closed
or 1-open) to construct a “golden” dataset to use as an effective
ground truth (Fig. 6d, e). The consensus idealisation included
3241 openings. To check for inter-user agreement (Fig. 6b) we
calculated the over-all Fleiss Kappa32 implemented in R with the
irr package, Fleiss Kappa was 0.953, with p ≤ 1e–6. We then
idealised this raw data (blinded from the “golden” dataset) with
Deep-Channel and a range of other alternatives (Fig. 6f, g, h). The
two alternatives we benchmark here are SKM using QuB13 and
Minimum description length (MDL, using MatLab)33. Note that
with Deep-Channel, there are no parameters to set and no post-

0 1 2 3 4
0

50

100

150

200

0 1 2 3 4
0

50

100

150

200

O
C

O
C

O
C

5 ms

Co
un

t/
to

ta
l

Amplitude (pA)

closed open

ycneuqerFtrqS

Log dura�on
-1 0 1 2

0.00

0.01

0.02

0.03

0.04

Log dura�on

Patch Clamp Amplifier

Headstage
Model 

cell

DAC
converter

Computer
Produc�on of semi-synthe�c datasets

MC-100M

ADC converter

100% 100% 100%

Crea�on of datasets

Training (80%) Tes�ng (20%)

Calcula�on of accuracy, loss etc:  Selec�on of best DL model  

M
od

el
 d

ev
el

op
m

en
t 

ne
w

 
da

ta
se

ts
 

Totally new datasets created and not exposed to any network
10 seconds of recording for each dataset

10 datasets from model “M1”, 7 datasets from model “M2”

M
od

el
 b

en
ch

m
ar

ki
ng

Results: Evalua�on of performance metrics 
(AUC, accuracy, loss, open probability (Po))

…

Experiment 1 Experiment 17

a f

b

c d e

Fig. 1 Workflow diagram: generation of artificial analogue datasets. a For training, validation and benchmarking, data were generated first as fiducial
records with authentic kinetic models in MATLAB (Fig. 2); these data were then played out through a CED digital to analogue converter to a patch clamp
amplifier that sent this signal to a model cell and recorded the signal back (simultaneously) to a hard disk with CED Signal software via a CED analogue to
digital converter. The degree of noise could be altered simply by moving the patch-clamp headstage closer to or further from the PC. In some cases, drift
was added as an additional challenge via a separate Matlab script. Raw single channel patch clamp data produced by these methods are visually
indistinguishable from genuine patch clamp data. To illustrate this point, we show here a standard analysis work-up for one such experiment with b raw
data, then it’s analyses with QuB: kinetic analyses of c channel open and d closed dwell times. Finally, we show (e) all points amplitude histogram. The
difference between this and standard ion channel data is that here we have a perfect fiducial record with each experimental dataset, which is impossible to
acquire without simulation. f Illustrates our over-all model design and testing workflow. The Supplementary Information includes training metrics from the
initial validation and the main text here shows performance metrics acquired from 17 experiments with entirely new datasets. The training datasets
typically contained millions of sample points and the 17 benchmarking experiments were sequences of 100,000 samples each.
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processing. With SKM one needs to identify closed and open state
levels and number of channels present. In the case of MDL there
is no pre-processing necessary and no parameters to set, but the
output is non-binary. Therefore, we ran a 50% event threshold
crossing method on this to output final open and closed calls.
These idealisations were all then compared to the “golden”
dataset with a Cohen’s kappa agreement script, Table 4. Also, we
fitted these data with a clustering and heatmap model in R, this
allows one to visually compare the agreement at each timepoint.

Discussion
Single molecule research, both FRET and patch-clamp electro-
physiology provide high resolution data on the molecular state
of proteins in real time, but their analyses are usually time
consuming and require expert supervision. In this report, we
demonstrate that a deep neural network, Deep-Channel, com-
bining recurrent and convolutional layers can detect events
in single channel patch-clamp data automatically. Deep-Channel
is completely unsupervised and thus adds objectivity to single
channel data analyses. With complex data, Deep-Channel also
outperforms traditional manual threshold crossing both in terms
of speed and accuracy. We find this method works with very high
accuracy across a variety of input datasets.

The most established single molecule method to observe single-
channel gating is patch-clamp recording2. Its development led to
the award of the Nobel Prize to Sakmann and Neher in 199134

and the ability to observe single channels gate in real time vali-
dated the largely theoretical model of the action potential
developed in the earlier Nobel Prize winning work of Hodgkin
and Huxley3. Whilst the power and resolution of single-channel
recording has never been questioned, it is well accepted to be a

technically difficult technique to use practically since the data
stream created requires laborious supervised analysis. In some
cases, where several single channels gate simultaneously, it
becomes impractical to analyse and data can be wasted. For
practical purposes, drug screening etc., where subtle changes in
channel activity could be crucial5, this means that the typical
method is to measure bulk activity from a whole-cell simulta-
neously. Average current can be measured which is useful, but
does not contain the detailed resolution that individual molecular
recording has14. Furthermore, new technologies are emerging
which can record ion channel data automatically15,35, but whilst
whole-cell currents are large enough to be analysed automatically,
there are currently no solutions to do the same with single-
channel events. Currently, it could be observed that automated
patch-clamp apparatus are not used a great deal for single-
channel studies and so automated analysis software are of little
value, however, we feel that the reverse is true; this equipment is
rarely used for single channel recording because no fully auto-
mated analysis exists. In this report we show that the latest
machine learning methods, that of deep learning, including
recurrent and CNN layers could address these limitations.

The fundamental limitation of applying deep learning to
classification of biological data of all kinds is the prerequisite for
training data. Deep learning is a form of supervised learning
where during the training phase, the network must be taught at
every single instant what the ground truth state is (it looks open,
but is it really open or closed?). We considered two possible
approaches to deal with this conundrum: to collect data from
easily analysable single molecule/patch clamp experiments and
get a human expert to idealise this (classify or annotate it). This
has two fundamental flaws that could be referred to as Catch-22.
Firstly, if you train a network only to detect easy to analyse data,
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Fig. 2 Deep-Channel model architecture. The input time series data were fed to the 1D Convolution layer (1D-CNN) which includes both 1D convolution
layers and max pooling layers. After this, data was flattened to the shape of the next network layer, which is an LSTM. Three LSTM layers were stacked and
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the output will be a network that can only detect easy-to-detect
events. Secondly, even then, if the events had to be human
detected in the first place, it would mean that the final (trained)
network would learn the same events as the human taught it; and
learn the same errors. Analyses of ambiguous events would not
tend toward detection with perfect accuracy, but inherit human
biased errors. We therefore developed an alternative approach.
Single channels gate in a stochastic, Markovian manner and
therefore an unlimited number of idealised records can be
simulated. This approach has been successfully applied before
with other analyses development studies12,36. The limitation is
that there are inherent distortions and filtering that occur during
collection of genuine data from a real analogue world. These can
be imitated mathematically, but instead we used a previously
unreported method of generating semi-synthetic training data; we
played our idealised records out to a genuine patch-clamp
amplifier using the dynamic-clamp approach37 and used an
established analogue test cell (resistors and capacitors equivalent
to a patch pipette and membrane). Our first data figure (Fig. 1b)
shows the authenticity of this data and the approach. In sum-
mary, our methodology allows the creation of 100,000 training
sets with noisy data in parallel to a ground truth idealisation. To
conclude our work, we also compared deep channel performance
against a simple “golden” idealisation by human supervised
methods and two other existing methods. There are two obvious
caveats with this approach, but we feel it is useful nonetheless.
The first obvious caveat, is that in order for it to be possible to

create the Golden datasets with human experts, it needed to be a
very simple dataset with relatively few clear events. Secondly, it is
not a ground truth. The small error between the Expert and
Deep-Channel channels could be because the Experts were wrong
rather than Deep-Channel. Bias, generally is discussed below,
nevertheless the success of Deep-Channel in this experiment
supports its potential for solving real ion channel idealisation
problems.

Since our aim was to classify a time series, we developed a
network with the combined power of both 1D-CNN layers and
RNN (LSTM) units. Deep-Channel has a 1D-CNN at its core, but
whilst ion channel activity is Markovian, the presence of both
short and long duration underlying states means that it is
important for a detection network to also be able to learn long-
term dependencies across and so accuracy is improved with the
LSTM (see Supplementary Information). Similar approaches
combining RNNs and convolution layers have previously been
applied to various analysis of biological gene sequences38 and cell
detection in image classification39, but this is its first use for
single-channel activity detection to our knowledge.

We used a number of metrics that are commonplace in
machine learning and patch-clamp recording. Initially, to test the
ability of Deep-Channel to detect events, we compared detected
(predicted) idealised events against the fiducial idealised records.
To compare against the human supervised methods, we analysed
matching datasets with QuB and Deep-Channel and compared
the summary parameter, open probability (Po) between them,
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Fig. 3 “Patch clamp” data were produced from two different stochastic models. a, c The Markovian models used for simulation of ion channel data. Ion
channels typically move between Markovian states that are either closed (zero conductance) or open (unitary conductance, g). The current passing when
the channel is closed is zero (aside from recording offsets and artefacts), whereas when open the current (i) passing is given by i= g × V, where V is the
driving potential (equilibrium potential for the conducting ion minus the membrane potential). In most cases there are several open and closed states
(“O1”–“O3”, or “C1”–“C3”, respectively). The central dogma of ion channel research is that the g will be the same for O1, O2, or O3. Although substates
have been identified in some situations, these are beyond the scope of our current work. a Model M1; the stochastic model from Davies et al.41 and its
output. b This model has a low open probability, and so the data is mostly a representation of zero or one channel open. c Model M2; the stochastic model
from ref. 42 and its output data (d) since open probability is high the signal is largely composed of three or more channels simultaneously open.
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together with F1 accuracies. Firstly, Deep-Channel was far
quicker, to the degree that sometimes with complex multichannel
data, manual analyses seems a stressful and near impossible task.
With Deep-channel the complexity (within the datasets we used)
made no difference to the speed or accuracy of performance. In
terms of relative performance, note that whilst there was a strong
correlation between open probabilities measured between Deep-
Channel and threshold crossing, the F1-accuracy scores of the
noisy data measured by threshold crossing fell of sharply. The
significance of this is that whilst average open probability esti-
mates from threshold crossing seem reasonable (some over esti-
mates, some under-estimates cancelling out) the time-point by
time-point accuracy essential for kinetic analyses is poor.

In the present work, we developed a method that works with
channels of any size and kinetic distribution, but we did not
include detection of multiple phenotypes or sub-conductances,
etc. A perceived problem, specifically with a machine-learning
model, is its generalisability. The concern is that the network
would be good at detecting events in the exact dataset it was
trained on, but fall short, when challenged with a quite different,
but equally valid dataset; a problem known as over fitting. Fur-
thermore, the heavy reliance on our model on training with
synthetic data could lead to subtle and unexpected biases. In cell-
attached mode, for example, the most feasible method for use in
automated patch-clamp machines, there is often an asymmetry
(relaxation) of larger events. This is shown to an extreme degree

by Fenwick et al.40, but more subtle examples are often seen in
native data. This could arrive from two situations, beyond the
technical limitations of the headstage; for example, if the mem-
brane potential changes during recording or if sufficient ion
movement through the channel changes the ion driving force mid
sojourn. Our training data did not see these types of anomalies.
Furthermore, a subtle noise effect occurs with genuine ion
channel events that experience patch clampers can see by eye;
open channel noise as well as the well-known pink noise (1/f) of
biological membranes. The noise level tends to increase during
ion channel opening sojourns. To completely eliminate these or
other biases long-term may be impossible, but potentially, mixing
human annotated and synthetic data in an appropriate ratio may
be one possible route. The goal would be to balance potential
hidden biases from the synthetic data against the inevitable biases
of human curation (humans will make human errors and be
simply unable to label complex signals). Since perfect curation of
simple datasets requires very simple datasets to annotate and is
time consuming, potentially data augmentation could be used to
build complex semi-synthetic datasets by building up layers of
simpler data. Our tests against a Golden dataset produced by five
ion channel experts found Deep-Channel to be remarkably good
and it was a conservative test: the SKM method required us to
define the initial closed and open state level, we did not do that in
Deep-Channel. The SKM method required us to define that there
would be one channel present, we did not do that with Deep-
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Fig. 4 Qualitative performance Deep-Channel with previously unseen data. a–c Representative example of Deep-Channel classification performance with
low activity ion channels (data from model M1, Fig. 3a, b): a The raw semi-simulated ion channel event data (black). b The ground truth idealisation/
annotation labels (blue) from the raw data above in (a). c The Deep-Channel predictions (red) for the raw data above (a). d–f Representative example of
Deep-Channel classification performance with 5 channels opening simultaneously (data from model M2, Fig. 3c, d). d The semi-simulated raw ion channel
event data (black). e The ground truth idealisation/annotation labels (blue) from the raw data above in (d). f The Deep-Channel label predictions (red) for
the raw data above (d).
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Channel. It recognised that there was only one channel present,
simply from the waveform. Currently, Deep-Channel can recog-
nise up to five channels opening simultaneously.

We have demonstrated here the effectiveness of Deep-Channel,
an artificial deep neural network to detect events in single
molecule datasets, especially, but not exclusively patch-clamp
data, but the potential for deep learning convolution/LSTM net-
works to tackle other problems cannot be overestimated.

Methods
We develop a deep learning approach to automatically process large collections of
single/multiple ion channel data series with detection of ion channel transition
events, and re-construction of annotated idealised records. Datasets with pre-
processing and analysis pipeline code will be made publicly available on GitHub
(https://github.com/RichardBJ/Deep-Channel.git) including the model code to
facilitate reproducibility. Figure 1 shows an overall workflow and experimental

design; creation of the digitised synthetic analogue datasets for developing a deep
learning model, together with steps for training and testing (validating).

Data description and dataset construction. Ion channel dwell-times were
simulated using the method of Gillespie43 from published single channel models.
Channels are assumed to follow a stochastic Markovian process and transition
from one state to the next simulated by randomly sampling from a lifetime
probability distribution calculated for each state. Authentic “electrophysiological”
noise was added to these events by passing the signal through a patch-clamp
amplifier and recording it back to file with CED’s Signal software via an Axon
electronic “model cell”. In some datasets additional drift was applied to the final
data with Matlab. Two different stochastic gating models, (termed M1 and M2)
were used to generate semi-synthetic ion channel data. M1 is a low open prob-
ability model from ref. 41 (Fig. 3a, b), typically no more than one ion channel opens
simultaneously. Model M2 is from refs. 42,44 and has a much higher open prob-
ability (Fig. 3c, d), consequently up to five channels opened simultaneously and
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Fig. 5 Quantitative performance of Deep-Channel with previously unseen
data. a Representative receiver operating characteristic (ROC) curve for ion
channel event classification using the M1 stochastic gating model (Fig. 3a)
and with only one channel present. The associated confusion matrix is
shown in Table 2. b Representative receiver operating characteristic (ROC)
curve for ion channel event classification using the M2 stochastic gating
model (Fig. 3) and with five channels present The associated confusion
matrix is shown in Table 3. Mean AUC are given in Table 1. The mean ROC
curve area under the curves (AUC) for all labels and all 17 experiments are
given in Table 1.

Table 1 Deep-Channel ROC area under the curve (AUC)
values achieved during 17 separate experiments,
representative examples shown in Fig. 5.

Mean ROC AUC

Number of Channels open
simultaneously

low Popen data
model M1, n= 10
mean ± SD

High Popen data
model M2, n= 7
mean ± SD

0 0.99 ± 0.006 0.9997 ± 0.0002
1 0.96 ± 0.05 0.9973 ± 0.0022
2 − 0.9917 ± 0.0065
3 − 0.9824 ± 0.0139
4 − 0.9787 ± 0.0169
5 − 0.9937 ± 0.0050

Table 3 The confusion matrix table for the example in
Fig. 5b.

Deep-Channel predicted labels

0 1 2 3 4 5

True labels 0 129 15 0 0 0 0
1 130 1993 262 0 0 0
2 0 932 9580 1621 0 0
3 0 0 1884 25241 3054 0
4 0 0 0 2782 31439 2579
5 0 0 0 0 2050 16308

Label 0= no channels open, Label 1= one channel open, label 2= 2 channels open etc. The
mean ROC curve area under the curves (AUC) for all labels and all 17 experiments are given in
Table 1. The emboldened numbers are the number of data points correctly predicted by Deep-
Channel

Table 2 The confusion matrix table for the example in
Fig. 5a.

Deep-Channel predicted labels

0 1 2 3 4 5

True labels 0 96890 726 0 0 0 0
1 9 2371 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0

Label 0= no channels open, label 1= one channel open. Note that Deep-Channel is trained to
recognise up to 5 channels opening at a time, however, with only one channel active at a time,
the maximum ground truth class (True Label) is label 1 (one channel open). The emboldened
numbers are the number of data points correctly predicted by Deep-Channel
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there are few instances of zero channels open. The source code for generating a
combination of different single/multiple ion channel recordings is also given along
with the publicly available datasets. Using this system, we can generate any number
of training datasets with different parameters such as number of channels in the
patch, number of open/close states, sampling frequency and temporal duration,
based on published stochastic models. Fiducial, ground truth annotations for these
datasets were produced simultaneously using MATLAB. Recordings were sampled
at 10 kHz and each record had 10 s duration. To validate the Deep-Channel model,
six different validation datasets were used: three datasets for single; and three
datasets for multi-channel recordings. Datasets for training typically contained
10,000 subsets of 10 s each. Each dataset includes raw current data and ground
truth state labels from the stochastic model, which we refer to as the idealisation.
Within these training datasets, the third column is the fiducial record/ground truth
and includes the class labels; “0”–“5”. Each label indicates the instantaneous
number(s) of open channels at a given time.

Model background. LSTM, is a type of RNN, the deep learning model architecture
that is now widely adopted efficiently for time series forecasting with long-range
dependencies. The major advantage of LSTM over RNN is its memory cell ct, which
is computed by summing of the state information. This cell acts like a gate that
activates or deactivates past information by several self-parametrised controlling
gates including input, output and forget gates. As long as the input gate has a value
of zero, then no information is allowed to access the cell. When a new input comes,

its information is passed and summed to the cell if the input gate it is, in turn,
activated. Ideally, the LSTM should learn to reset the memory cell information after
it finishes processing a sequence and before starting a new sequence. This
mechanism is dealt by forget gates ft and the past cell content history ct�1 can be
forgotten in this process and reset if the forget gate ft is activated. Whether a cell
output ct will be passed to the final state ht is further allowed by the output gate ot.
The main innovation of using gating control mechanisms in LSTMs is that it
ameliorates the vanishing gradient problem. This limitation of the general RNN
model27,45 is thus eliminated during forward and backward propagation periods.
The key equations of an LSTM unit are shown in (1) below, where “∘” denotes the
Hadamard product

zt ¼ tanhðWzxt þ Rzht�1 þ bzÞ inputð Þ
it ¼ σðWixt þ Riht�1 þ biÞ input gateð Þ
f t ¼ σðWf xt þ Rf ht�1 þ bf Þ forget gateð Þ
ot ¼ σðWoxt þ Roht�1 þ boÞ output gateð Þ
ct ¼ zt � it þ ct�1 � ft cell stateð Þ
ht ¼ tanhðctÞ � ot outputð Þ

ð1Þ

The W*s are input weights, the R*s are recurrent weights, b*s are the biases, xt is
denoted as the current input and ht�1 is referred as the output from previous time
step. The weighted inputs are accumulated and passed through tanh activation,
resulting in zt. Multiple LSTMs can be stacked and temporarily combined with
other types of deep learning architectures to form more complex structures. Such
models have been applied to overcome previous sequence modelling problems46.

Model development—network architecture. Our Deep-Channel RCNN model
was implemented in Keras with a Tensorflow backend47 using Python 3.6. Figure 2
shows a graphical representation of the model architecture consisting of an input
layer and 1D-convolution layer, a ReLU layer, a max pooling layer, a fully con-
nected layer, three-stacked LSTM with batch normalisation (BN) and drop out
layers, and a final SoftMax48 output layer. For training; 3D data with ion channel
current recordings (raw data), time steps (n= 1), and features (n= 1) served as
input to the 1D convolution layer. This input layer feeds into a temporal con-
volution layer to investigate frame-level features. Afterwards, the output of the
flattened convolutional layer is fed to the three-stacked LSTM layers. Finally, the
network feeds into one dense neuron with a SoftMaxactivation function, outputting
the probability of a given channel level. This combined 1D convolution LSTM
(RCNN) model was then saved as a hierarchical data format file HDF5 to allow
automatic detection in other datasets without need to retrain. HDF5 files, including
trained tensor weighting, are also available via our GitHub site.
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Fig. 6 Performance of Deep-Channel with biological ion channel data. a Single channel data from ref. 31 with noise approximately 850,000 data points
decimated by a factor of 50 for display only. b The modal idealisation by five ion channel experts (“golden” idealisation). c Agreement clustering and
heatmap between “golden” dataset, MDL, Deep-Channel and SKM. d A zoomed view of 500ms of raw biological data taken from (a). e The expert
consensus (modal) idealisation. f The idealisation output by SKM (after setting channel closed and open levels and setting the number of channels to 1),
g By Deep-Channel and h by MDL. Note that c, f, g and h were produced without baseline correction.

Table 4 The Cohen’s kappa agreement scores for automatic
analyses, including Deep-channel, SKM, and MDL with
golden dataset which is built by five different human experts
using their existing software tools.

Cohen’s kappa score 0.95% CI

MDL 0.766a 0.7646–0.7674
SKM 0.6497b 0.6481–0.6513
Deep-channel 0.9279 0.9288–0.9304

aMDL does not output an idealisation and so we binarized the MDL output using a 50%
threshold crossing algorithm to allow comparison
bSKM implemented in QuB has no true automatic function, one need to set the starting baseline,
channel amplitude and number of channels before starting. We did not perform additional
baseline correction or input baseline nodes for this comparison
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Class imbalance. Typical real-world ion channel time series data are usually
inherently class imbalanced (see for example, the confusion matrices in Fig. 5); if
only one channel is present, there could be very few openings or very few closures.
If there is more than one channel in the patch, the number of channels open at any
one instant will be distributed binomially. This increases the volume of data
required to train the network. To address this, where we looked at highly active
channels, our training process used an oversampling of the minority classes,
rearranging datasets evenly using the synthetic minority oversampling technique49,
implemented in the Python Imbalanced-Learn library50. SMOTE adds the over-
samples to the end of the end of the data record, but for training purposes we
shuffled those back into the body of the data.

1D-convolutional layer. The 1D Convolution layer (1D-CNN) step consists of 1D-
CNN, rectified linear unit (ReLU) layer51 and max pooling layer. We used 64 filters
and ReLU was applied as an activation function. After that, the max-pooling layer
was added to each output to extract a representative value. Finally, data were
flattened to allow input to the next network layer, an LSTM.

RNN-LSTM. Three LSTM layers were stacked and each contains 256 LSTM units
with ReLU activation functions. In the next step, a BN52 was applied to standardise
the inputs, meaning the mean will be close to 0, and the standard deviation close to
1, hence the training of the model is accelerated. Dropout layers were also
appended to all RNN-LSTM layers with the value of 0.2 to reduce overfitting53. The
returned features from the stacked RNN-LSTM layers were then fed into a flatten
layer to have a suitable shape for the final layer. The updated features are then
forwarded to a Dense output layer with a SoftMax activation function, in which
output features one dense neuron PER potential channel level (zero to maximum
channels). In our current model this maximum value is five channels. The output is
the probability of each given class (e.g., the probability of x channels being open at
each timepoint). In order to calculate the final classification, we take the class with
maximum value probability at each instant.

Model training. In the model training stage, once the probability values are cal-
culated, errors between the predicted values and true values were calculated with a
sparse categorical cross entropy as a loss function. To optimise the loss value,
stochastic gradient descent was applied as an optimiser with an initial learning rate
of 0.001, momentum of 0.9, and the size of a mini-batch was set to between 256
and 2048 depending on the model. A learning rate decaying strategy was employed
to the model to yield better performance. Based on this strategy, the learning rate
(initially is 0.001) was decayed at each 10th epoch with decaying factor 0.01 of
learning rate. The proposed Deep-Channel model was trained for 50 epochs. In the
case of the training data an 80%-train and 20%-test split was performed.

Performance metrics. One of the clearest quality indicators of a classification deep
learning method is the confusion matrix, sometimes called as contingency table54.
This consists of four distinctive parameters, which are true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN). If the model’s output
accurately predicts the ion channel event, it is considered as TP. On the other hand,
it is indicated as FP if the model incorrectly detected an ion channel event when
there is no a channel opening. If the model output misses an ion channel event
activity, then it is computed as FN. These metrics are used in calculation of eva-
luation metrics such as precision (positive predicted value), recall (sensitivity) and
F-score as described below in (3)–(5), respectively

P ¼ TP
TPþ FP

; ð3Þ

R ¼ TP
TPþ FN

; ð4Þ

F ¼ 2PR
P þ R

; ð5Þ

where P, R and F denote precision, recall and F-score, respectively. In addition, area
under curve (AUC) and receiver operating characteristic (ROC) parameters are
efficiently used to visualise the model performance in classification problems. The
ROC shows the probability relations between true positive rate (sensitivity-recall),
and false positive rate (1-specificity), while AUC represents a measure of the
separability between classes.

As an additional metric, more familiar to electrophysiologists we also calculated
the open probability (Po), and compared this metric between Deep-Channel, a
traditional software package (QuB) and the ground truth. The equation for open
probability is given in (Eq. 6) as follows:

Po ¼
PN

j¼1 tjj

TN
; ð6Þ

where T denotes total time, N is defined as numbers of channels in the patch, and tj
is referred to the time spent with j channels open55. Since true numbers of channels
in a patch is always an unknown parameter this was estimated as the maximum
number of simultaneous openings.

Computer hardware. In this work, we trained the Deep-Channel model on a
workstation with an Nvidia Geforce GTX 1080Ti and 32GB RAM. The entire
process of the proposed model including training, validating, evaluating, and
visualising process was employed within Python Spyder 3.6. Speed estimations
were made with a similar PC, but without a GPU.

Statistics. Statistical analyses were performed with R-studio, means are quoted
with standard deviations, n is the number of experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Datasets with pre-processing and analysis pipeline code are made publicly available on
GitHub (https://github.com/RichardBJ/Deep-Channel.git). Source data underlying plots
are in Supplementary Data 1 and all other data (if any) are available upon request.

Code availability
All code will be available on GitHub (https://github.com/RichardBJ/Deep-Channel.git)
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