22 research outputs found

    Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry

    Get PDF
    Osteochondral grafting for cartilage lesions is an attractive surgical procedure; however, the clinical results have not always been successful. Surgical recommendations differ with respect to donor site and graft placement technique. No clear biomechanical analysis of these surgical options has been reported. We hypothesized that differences in graft placement, graft biomechanical properties, and graft topography affect cartilage stresses and strains. A finite element model of articular cartilage and meniscus in a normal knee was constructed. The model was used to analyze the magnitude and the distribution of contact stresses, von Mises stresses, and compressive strains in the intact knee, after creation of an 8-mm diameter osteochondral defect, and after osteochondral grafting of the defect. The effects of graft placement, articular surface topography, and biomechanical properties were evaluated. The osteochondral defect generated minimal changes in peak contact stress (3.6 MPa) relative to the intact condition (3.4 MPa) but significantly increased peak von Mises stress (by 110%) and peak compressive strain (by 63%). A perfectly matched graft restored stresses and strains to near intact conditions. Leaving the graft proud by 0.5 mm generated the greatest increase in local stresses (peak contact stresses = 6.7 MPa). Reducing graft stiffness and curvature of articular surface had lesser effects on local stresses. Graft alignment, graft biomechanical properties, and graft topography all affected cartilage stresses and strains. Contact stresses, von Mises stresses, and compressive strains are biomechanical markers for potential tissue damage and cell death. Leaving the graft proud tends to jeopardize the graft by increasing the stresses and strains on the graft. From a biomechanical perspective, the ideal surgical procedure is a perfectly aligned graft with reasonably matched articular cartilage surface from a lower load-bearing region of the knee

    A Review of Commercially Available Point-of-Care Devices to Concentrate Bone Marrow for the Treatment of Osteoarthritis and Focal Cartilage Lesions

    Get PDF
    Mesenchymal stem cells (MSCs) are a promising cell-based therapy treatment option for several orthopedic indications. Because culture expansion of MSC is time and cost intensive, a bedside concentration of bone marrow (BM) aspirate is used as an alternative. Many commercial systems are available but the available literature and knowledge regarding these systems is limited. We compared different point-of-care devices that concentrate BM (BMC) by focusing on technical features and quality parameters to help surgeons make informed decisions while selecting the appropriate device

    The Resistance Force of the Anterior Cruciate Ligament during Pull Probing Is Related to the Mechanical Property

    No full text
    There are various methods for reconstructing the anterior cruciate ligament (ACL) from other muscles or tendons. Initial tension of the reconstructed ACL is one of the key elements affecting postoperative outcomes. However, tension cannot be measured after graft fixation. The only intraoperative assessment is pull probing, which is performed by pulling joint soft tissues with the arthroscopic probe and can be measured quantitatively. Therefore, its value might be used as an alternative value for the mechanical property of the ACL. Using a probing device one author developed to measure the resistance force of soft tissues quantitatively while probing, we measured the resistance force of dissected ACLs and used tensile testing to investigate the correlation between the resistance force and the mechanical property of the ligaments. According to the results, when a certain amount of tension (strain; 16.6%) was applied, its mechanical properties were moderately correlated (r = 0.56 [p = 0.045]) with the probing force. Therefore, the tension of the reconstructed ACL after fixation under real ACL reconstruction surgery can be derived from the value of the probing device

    Tibial sagittal and rotational alignment reduce patellofemoral stresses in posterior stabilized total knee arthroplasty

    No full text
    Abstract Patellofemoral joint complications remain an important issue in total knee arthroplasty. We compared the patellofemoral contact status between cruciate-retaining and posterior-stabilized designs with varying degrees of tibial sagittal and rotational alignment using a computer simulation to ensure proper alignments in total knee arthroplasty. Knee kinematics, patellofemoral contact force and quadriceps force were computed using a musculoskeletal modeling program (LifeMOD/KneeSIM 2010; LifeModeler, Inc., San Clemente, California) during a weight-bearing deep knee bend. Two different posterior tibial slope (PTS)s (3° and 7°) and five different tibial tray rotational alignments (neutral, internal 5° and 10°, and external 5° and 10°) were simulated. Patellofemoral contact area and stresses were next computed using finite element analysis. The patellofemoral contact force for the posterior-stabilized design was substantially lower than the cruciate-retaining design after post-cam contact because of increasing femoral roll-back. Neutral rotational alignment of the tibial component resulted in smaller differences in patellofemoral contact stresses between cruciate-retaining and posterior-stabilized designs for PTSs of 3° or 7°. However, the patellar contact stresses in the cruciate-retaining design were greater than those in posterior-stabilized design at 120° of knee flexion with PTS of 3° combined with internal rotation of the tibial component. Our study provides biomechanical evidence implicating lower PTSs combined with internal malrotation of the tibial component and the resultant increase in patellofemoral stresses as a potential source of anterior knee pain in cruciate-retaining design

    Translation of the humeral head scale is associated with success of rotator cuff repair for large-massive tears

    No full text
    Abstract Background Although a loss of rotator cuff integrity leads to the superior migration of the humeral head, the parameters that characterize the anterolateral migration of the humeral head have not been established. The purpose of this study was to investigate the correlation between the translation of the humeral head scale (T-scale) and clinical outcomes of rotator cuff repair, as well as the correlation between the T-scale and radiologic parameters. Methods One hundred thirty-five consecutive patients with full-thickness rotator cuff tears underwent primary rotator cuff repair. The T-scale, which indicates the distance from the center of the humeral head to the lateral coracoacromial arch, was measured on axial computed tomography scans, and the acromiohumeral interval (AHI) was measured radiographically. The correlation of the two parameters with the clinical scores of the Japanese Orthopaedic Association and University of California–Los Angeles scores and active forward elevation (FE) were evaluated at the preoperative and postoperative stages, respectively. Results The postoperative T-scale and AHI correlated well with the postoperative FE and clinical scores in the patients with large-massive tears but not in those patients with small-medium tears and preoperative large-massive tears. A significant correlation was observed between the postoperative T-scale and AHI. The T-scale was subject to cuff repair integrity. Conclusions We demonstrated that the postoperative T-scale was well correlated with the clinical results and postoperative AHI after rotator cuff repair for large-massive tears, indicating that poor outcomes are associated with combined superior and anterolateral migration of the humeral head following retears
    corecore