5 research outputs found

    A Novel T Cell Receptor Transgenic Animal Model of Seborrheic Dermatitis-Like Skin Disease

    Get PDF
    We have characterized a novel animal model of the common inflammatory skin disease seborrheic dermatitis (SD) that involves the expression of the self-specific 2C transgenic T cell receptor on the DBA/2 genetic background. Opportunistic fungal pathogens are present in the primary histological lesions and severe disease can be mitigated by the administration of fluconazole, demonstrating a role for infection in disease pathogenesis. Spontaneous disease convalescence occurs at 70–90 d of age and is preceded by an expansion of CD4+ T cells that partially restores the T cell lymphopenia that occurs in these animals. The adoptive transfer of syngeneic CD4+ T cells into pre-diseased DBA/2 2C mice completely abrogates the development of cutaneous disease. The pattern of disease inheritance in DBA/2 backcrosses suggests that one, or a closely linked group of genes, may control disease penetrance. Bone marrow reconstitution experiments demonstrated that the DBA/2 susceptibility factor(s) governing disease penetrance is likely non-hematopoietic since bone marrow from disease-resistant 2C mice can adoptively transfer the full disease phenotype to non-transgenic DBA/2 animals. This model implicates fungal organisms and CD4+ T cell lymphopenia in the development of a SD-like condition and, as such, may mimic the development of SD in acquired immunodeficiency syndrome

    Functional deficiencies of granulocyte-macrophage colony stimulating factor and interleukin-3 contribute to insulitis and destruction of β cells

    No full text
    The pathogenesis of type 1 diabetes (T1D) involves the immune-mediated destruction of insulin-producing β cells in the pancreatic islets of Langerhans. Genetic analysis of families with a high incidence of T1D and nonobese diabetic (NOD) mice, a prototypical model of the disorder, uncovered multiple susceptibility loci, although most of the underlying immune defects remain to be delineated. Here we report that aged mice doubly deficient in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) manifest insulitis, destruction of insulin-producing β cells, and compromised glucose homeostasis. Macrophages from mutant mice produce increased levels of p40 after LPS stimulation, whereas concurrent ablation of interferon-γ (IFN-γ) ameliorates the disease. The administration of antibodies that block cytotoxic T lymphocyte associated antigen-4 (CTLA-4) to young mutant mice precipitates the onset of insulitis and hyperglycemia. These results, together with previous reports of impaired hematopoietic responses to GM-CSF and IL-3 in patients with T1D and in NOD mice, indicate that functional deficiencies of these cytokines contribute to diabetes
    corecore