81 research outputs found

    Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean <it>Daphnia pulex</it> with 24 non-immune system genes.</p> <p>Results</p> <p>In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK) test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing) in the genes that show the greatest deviation from neutral evolution.</p> <p>Conclusions</p> <p>Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.</p

    Molecular evolution and phylogenetics of rodent malaria parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last 6 decades, rodent <it>Plasmodium</it> species have become key model systems for understanding the basic biology of malaria parasites. Cell and molecular parasitology have made much progress in identifying genes underpinning interactions between malaria parasites, hosts, and vectors. However, little attention has been paid to the evolutionary genetics of parasites, which provides context for identifying potential therapeutic targets and for understanding the selective forces shaping parasites in natural populations. Additionally, understanding the relationships between species, subspecies, and strains, is necessary to maximize the utility of rodent malaria parasites as medically important infectious disease models, and for investigating the evolution of host-parasite interactions.</p> <p>Results</p> <p>Here, we collected multi-locus sequence data from 58 rodent malaria genotypes distributed throughout 13 subspecies belonging to <it>P. berghei, P. chabaudi, P. vinckei,</it> and <it>P. yoelii.</it> We employ multi-locus methods to infer the subspecies phylogeny, and use population-genetic approaches to elucidate the selective patterns shaping the evolution of these organisms. Our results reveal a time-line for the evolution of rodent <it>Plasmodium</it> and suggest that all the subspecies are independently evolving lineages (i.e. species). We show that estimates of species-level polymorphism are inflated if subspecies are not explicitly recognized, and detect purifying selection at most loci.</p> <p>Conclusions</p> <p>Our work resolves previous inconsistencies in the phylogeny of rodent malaria parasites, provides estimates of important parameters that relate to the parasite’s natural history and provides a much-needed evolutionary context for understanding diverse biological aspects from the cross-reactivity of immune responses to parasite mating patterns.</p

    Virus prevalence and genetic diversity across a wild bumblebee community

    Get PDF
    Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild

    Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine

    Get PDF
    Genetic studies of Drosophila melanogaster have provided a paradigm for RNA interference (RNAi) in arthropods, in which the microRNA and antiviral pathways are each mediated by a single Argonaute (Ago1 and Ago2) and germline suppression of transposable elements is mediated by a trio of Piwi-subfamily Argonaute proteins (Ago3, Aub, and Piwi). Without a suitable evolutionary context, deviations from this can be interpreted as derived or idiosyncratic. Here we analyze the evolution of Argonaute genes across the genomes and transcriptomes of 86 Dipteran species, showing that variation in copy number can occur rapidly, and that there is constant flux in some RNAi mechanisms. The lability of the RNAi pathways is illustrated by the divergence of Aub and Piwi (182-156Ma), independent origins of multiple Piwi-family genes in Aedes mosquitoes (less than 25Ma), and the recent duplications of Ago2 and Ago3 in the tsetse fly Glossina morsitans. In each case the tissue specificity of these genes has altered, suggesting functional divergence or innovation, and consistent with the action of dynamic selection pressures across the Argonaute gene family. We find there are large differences in evolutionary rates and gene turnover between pathways, and that paralogs of Ago2, Ago3, and Piwi/Aub show contrasting rates of evolution after duplication. This suggests that Argonautes undergo frequent evolutionary expansions that facilitate functional divergence.Peer reviewe
    corecore