97 research outputs found

    Estrogen-Astrocyte interactions: Implications for neuroprotection

    Get PDF
    BACKGROUND: Recent work has suggested that the ovarian steroid 17β-estradiol, at physiological concentrations, may exert protective effects in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and acute ischemic stroke. While physiological concentrations of estrogen have consistently been shown to be protective in vivo, direct protection upon purified neurons is controversial, with many investigators unable to show a direct protection in highly purified primary neuronal cultures. These findings suggest that while direct protection may occur in some instances, an alternative or parallel pathway for protection may exist which could involve another cell type in the brain. PRESENTATION OF THE HYPOTHESIS: A hypothetical indirect protective mechanism is proposed whereby physiological levels of estrogen stimulate the release of astrocyte-derived neuroprotective factors, which aid in the protection of neurons from cell death. This hypothesis is attractive as it provides a potential mechanism for protection of estrogen receptor (ER)-negative neurons through an astrocyte intermediate. It is envisioned that the indirect pathway could act in concert with the direct pathway to achieve a more widespread global protection of both ER+ and ER- neurons. TESTING THE HYPOTHESIS: We hypothesize that targeted deletion of estrogen receptors in astrocytes will significantly attenuate the neuroprotective effects of estrogen. IMPLICATIONS OF THE HYPOTHESIS: If true, the hypothesis would significantly advance our understanding of endocrine-glia-neuron interactions. It may also help explain, at least in part, the reported beneficial effects of estrogen in neurodegenerative disorders. Finally, it also sets the stage for potential extension of the hypothetical mechanism to other important estrogen actions in the brain such as neurotropism, neurosecretion, and synaptic plasticity

    Senolytic therapy is neuroprotective and improves functional outcome long-term after traumatic brain injury in mice

    Get PDF
    IntroductionChronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood.MethodsIn the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1β and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice.DiscussionTaken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior

    Extranuclear Estrogen Receptors Mediate the Neuroprotective Effects of Estrogen in the Rat Hippocampus

    Get PDF
    17beta-estradiol (E2) has been implicated to exert neuroprotective effects in the brain following cerebral ischemia. Classically, E2 is thought to exert its effects via genomic signaling mediated by interaction with nuclear estrogen receptors. However, the role and contribution of extranuclear estrogen receptors (ER) is unclear and was the subject of the current study.To accomplish this goal, we employed two E2 conjugates (E2 dendrimer, EDC, and E2-BSA) that can interact with extranuclear ER and exert rapid nongenomic signaling, but lack the ability to interact with nuclear ER due to their inability to enter the nucleus. EDC or E2-BSA (10 microM) was injected icv 60 min prior to global cerebral ischemia (GCI). FITC-tagged EDC or E2-BSA revealed high uptake in the hippocampal CA1 region after icv injection, with a membrane (extranuclear) localization pattern in cells. Both EDC and E2-BSA exerted robust neuroprotection in the CA1 against GCI, and the effect was blocked by the ER antagonist, ICI182,780. EDC and E2-BSA both rapidly enhanced activation of the prosurvival kinases, ERK and Akt, while attenuating activation of the proapoptotic kinase, JNK following GCI, effects that were blocked by ICI182,780. Administration of an MEK or PI3K inhibitor blocked the neuroprotective effects of EDC and E2-BSA. Further studies showed that EDC increased p-CREB and BDNF in the CA1 region in an ERK- and Akt-dependent manner, and that cognitive outcome after GCI was preserved by EDC in an ER-dependent manner.In conclusion, the current study demonstrates that activation of extranuclear ER results in induction of ERK-Akt-CREB-BDNF signaling in the hippocampal CA1 region, which significantly reduces ischemic neuronal injury and preserves cognitive function following GCI. The study adds to a growing literature that suggests that extranuclear ER can have important actions in the brain

    Photobiomodulation prevents PTSD-like memory impairments in rats

    Get PDF
    Abstract: A precise fear memory encoding a traumatic event enables an individual to avoid danger and identify safety. An impaired fear memory (contextual amnesia), however, puts the individual at risk of developing posttraumatic stress disorder (PTSD) due to the inability to identify a safe context when encountering trauma-associated cues later in life. Although it is gaining attention that contextual amnesia is a critical etiologic factor for PTSD, there is no treatment currently available that can reverse contextual amnesia, and whether such treatment can prevent the development of PTSD is unknown. Here, we report that (I) a single dose of transcranial photobiomodulation (PBM) applied immediately after tone fear conditioning can reverse contextual amnesia. PBM treatment preserved an appropriately high level of contextual fear memory in rats revisiting the “dangerous” context, while control rats displayed memory impairment. (II) A single dose of PBM applied after memory recall can reduce contextual fear during both contextual and cued memory testing. (III) In a model of complex PTSD with repeated trauma, rats given early PBM interventions efficiently discriminated safety from danger during cued memory testing and, importantly, these rats did not develop PTSD-like symptoms and comorbidities. (IV) Finally, we report that fear extinction was facilitated when PBM was applied in the early intervention window of memory consolidation. Our results demonstrate that PBM treatment applied immediately after a traumatic event or its memory recall can protect contextual fear memory and prevent the development of PTSD-like psychopathological fear in rats

    Acetylation of the Pro-Apoptotic Factor, p53 in the Hippocampus following Cerebral Ischemia and Modulation by Estrogen

    Get PDF
    Recent studies demonstrate that acetylation of the transcription factor, p53 on lysine(373) leads to its enhanced stabilization/activity and increased susceptibility of cells to stress. However, it is not known whether acetylation of p53 is altered in the hippocampus following global cerebral ischemia (GCI) or is regulated by the hormone, 17β-estradiol (17β-E(2)), and thus, this study examined these issues.The study revealed that Acetyl p53-Lysine(373) levels were markedly increased in the hippocampal CA1 region after GCI at 3 h, 6 h and 24 h after reperfusion, an effect strongly attenuated by 17β-E(2). 17β-E(2) also enhanced interaction of p53 with the ubiquitin ligase, Mdm2, increased ubiquitination of p53, and induced its down-regulation, as well as attenuated elevation of the p53 transcriptional target, Puma. We also observed enhanced acetylation of p53 at a different lysine (Lys(382)) at 3 h after reperfusion, and 17β-E(2) also markedly attenuated this effect. Furthermore, administration of an inhibitor of CBP/p300 acetyltransferase, which acetylates p53, was strongly neuroprotective of the CA1 region following GCI. In long-term estrogen deprived (LTED) animals, the ability of 17β-E(2) to attenuate p53 acetylation was lost, and intriguingly, Acetyl p53-Lysine(373) levels were markedly elevated in sham (non-ischemic) LTED animals. Finally, intracerebroventricular injections of Gp91ds-Tat, a specific NADPH oxidase (NOX2) inhibitor, but not the scrambled tat peptide control (Sc-Tat), attenuated acetylation of p53 and reduced levels of Puma following GCI.The studies demonstrate that p53 undergoes enhanced acetylation in the hippocampal CA1 region following global cerebral ischemia, and that the neuroprotective agent, 17β-E(2), markedly attenuates the ischemia-induced p53 acetylation. Furthermore, following LTED, the suppressive effect of 17β-E(2) on p53 acetylation is lost, and p53 acetylation increases in the hippocampus, which may explain previous reports of increased sensitivity of the hippocampus to ischemic stress following LTED

    Binge-Pattern Alcohol Exposure during Puberty Induces Long-Term Changes in HPA Axis Reactivity

    Get PDF
    Adolescence is a dynamic and important period of brain development however, little is known about the long-term neurobiological consequences of alcohol consumption during puberty. Our previous studies showed that binge-pattern ethanol (EtOH) treatment during pubertal development negatively dysregulated the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis, as manifested by alterations in corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP), and corticosterone (CORT) during this time period. Thus, the primary goal of this study was to determine whether these observed changes in important central regulators of the stress response were permanent or transient. In this study, juvenile male Wistar rats were treated with a binge-pattern EtOH treatment paradigm or saline alone for 8 days. The animals were left undisturbed until adulthood when they received a second round of treatments consisting of saline alone, a single dose of EtOH, or a second binge-pattern treatment paradigm. The results showed that pubertal binge-pattern EtOH exposure induced striking long-lasting alterations of many HPA axis parameters. Overall, our data provide strong evidence that binge-pattern EtOH exposure during pubertal maturation has long-term detrimental effects for the healthy development of the HPA axis

    Critical Role of NADPH Oxidase in Neuronal Oxidative Damage and Microglia Activation following Traumatic Brain Injury

    Get PDF
    BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2)(-)), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2)(-) induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI

    Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing

    Get PDF
    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions
    corecore