19 research outputs found

    Armenian hamster female protein (serum amyloid P component). Comparison with the sex-regulated homolog in Syrian hamster

    No full text
    Complementary DNA clones for Armenian hamster female protein (FP) were isolated and the complete nucleotide sequence and derived amino acid sequence were determined and compared with relevant data for the closely related Syrian hamster. Although biosynthesis of preSAP is directed by a 1.0-kb mRNA in both genera and the molecular mass of the primary translation product of FP is identical, the FP gene structure and regulation of expression of FP are different in Syrian and Armenian hamsters. Whereas the direction of alteration in FP mRNA levels is divergent in Syrian hamsters during an acute phase reaction, hepatic FP mRNA levels increase in both male and female Armenian hamsters during inflammation. Regulation of expression of Armenian and Syrian hamster FP genes occurs at a pretranslational level.5 page(s

    Developmental regulation of expression of C-reactive protein and serum amyloid A in Syrian hamsters

    No full text
    The fetal and maternal concentration of various plasma proteins alters during pregnancy. Cells in the livers of fetal hamsters accumulate serum amyloid A (SAA) and C-reactive protein (CRP) mRNA, major acute phase reactants, when lipopolysaccharide is administered to the fetal circulation. No fetal SAA or CRP mRNA response is seen when the mother is stimulated at a remote site by endotoxin or a nonspecific inflammatory agent. In addition, cells of the fetal hamster liver do not respond by accumulating SAA mRNA when exposed to the specific cytokines, tumor necrosis factor, IL-1, and IL-6. CRP mRNA levels increased in fetal livers after administration of tumor necrosis factor and IL-1. These data suggest that cells contained in the fetal liver can respond during an acute phase reaction but that the capacity of some acute phase reactant genes to respond to cytokines may be developmentally regulated. Studies of immature hamsters after birth show that the responses of CRP and SAA genes to lipopolysaccharide, tumor necrosis factor, IL-1, and IL-6 are reduced when compared with induction of mRNA accumulation for these acute phase reactants in adult animals.6 page(s

    Deletion of 1q in a patient with acrofacial dysostosis

    No full text
    The Nager syndrome is the most common form of acrofacial dysostosis. Although autosomal dominant and recessive forms of acrofacial dysostosis have been described the molecular etiology of these disorders is unknown. We report on a child with acrofacial dysostosis, critical aortic stenosis, and a deletion of chromosome 1q involving the heterochromatic block and adjacent euchromatin.4 page(s

    Vertebral anomalies in a new family with ODED syndrome

    No full text
    We report a new family with oculodigitoesophagoduodenal syndrome (ODED syndrome), which associates microcephaly, abnormalities of the hands and feet, shortened palpebral fissures, tracheoesophageal fistula and duodenal atresia. In addition, previously unreported vertebral anomalies are described. This report further delineates the clinical and radiographic spectrum of this syndrome, providing useful information for diagnosis and family counseling.5 page(s

    A Population-Based Study of Autosomal-Recessive Disease-Causing Mutations in a Founder Population

    Get PDF
    The decreasing cost of whole-genome and whole-exome sequencing has resulted in a renaissance for identifying Mendelian disease mutations, and for the first time it is possible to survey the distribution and characteristics of these mutations in large population samples. We conducted carrier screening for all autosomal-recessive (AR) mutations known to be present in members of a founder population and revealed surprisingly high carrier frequencies for many of these mutations. By utilizing the rich demographic, genetic, and phenotypic data available on these subjects and simulations in the exact pedigree that these individuals belong to, we show that the majority of mutations were most likely introduced into the population by a single founder and then drifted to the high carrier frequencies observed. We further show that although there is an increased incidence of AR diseases overall, the mean carrier burden is likely to be lower in the Hutterites than in the general population. Finally, on the basis of simulations, we predict the presence of 30 or more undiscovered recessive mutations among these subjects, and this would at least double the number of AR diseases that have been reported in this isolated population

    Variants in the SK2 channel gene (KCNN2) lead to dominant neurodevelopmental movement disorders

    No full text
    KCNN2 encodes the small conductance calcium-activated potassium channel 2 (SK2). Rodent models with spontaneous Kcnn2 mutations show abnormal gait and locomotor activity, tremor and memory deficits, but human disorders related to KCNN2 variants are largely unknown. Using exome sequencing, we identified a de novo KCNN2 frameshift deletion in a patient with learning disabilities, cerebellar ataxia and white matter abnormalities on brain MRI. This discovery prompted us to collect data from nine additional patients with de novo KCNN2 variants (one nonsense, one splice site, six missense variants and one in-frame deletion) and one family with a missense variant inherited from the affected mother. We investigated the functional impact of six selected variants on SK2 channel function using the patch-clamp technique. All variants tested but one, which was reclassified to uncertain significance, led to a loss-of-function of SK2 channels. Patients with KCNN2 variants had motor and language developmental delay, intellectual disability often associated with early-onset movement disorders comprising cerebellar ataxia and/or extrapyramidal symptoms. Altogether, our findings provide evidence that heterozygous variants, likely causing a haploinsufficiency of the KCNN2 gene, lead to novel autosomal dominant neurodevelopmental movement disorders mirroring phenotypes previously described in rodents
    corecore