180 research outputs found

    Niches and routes of transmission of Xanthomonas citri pv. fuscans to bean seeds

    Get PDF
    Aims Seeds are vectors of a diversified microbiota including plant pathogens. To better understand transmission of common bacterial blight (CBB) agents to bean seeds, we analyzed the role of non-pathogenic xanthomonads on seed transmission efficiency and investigated the location of Xanthomonas citri pv. fuscans (Xcf) into seeds and plantlets. Methods Competition between CBB and NP strains was initially assessed in vitro and then extended in planta to monitor the impact of co-inoculation on Xcf seed transmission. Moreover, location of Xcf strains in seeds and seedlings was visualized using a combination of gfp-tagged strain and DOPE-FISH/CSLM. Results Whereas CBB agent growth was inhibited in vitro by some seed-borne non-pathogenic xanthomonads strains, these strains did not transmit efficiently to seed through floral pathway and did not affect Xcf seed transmission. Xcf cells were observed entering seed through vascular elements and parenchyma of funiculus, but also micropyle and testa. Xcf cells were observed, moreover, among other bacteria on radicle surfaces, especially tip, in cotyledons, and plumules. Conclusions CBB agents are more efficient than non-pathogenic xanthomonads in using the floral route to colonize seeds. CBB agents are located within different niches in the seed tissues up to the embryonic axis

    Draft Genome Sequence of the Flagellated Xanthomonas fuscans subsp. fuscans Strain CFBP 4884

    Get PDF
    Article de revue (Article scientifique dans une revue à comité de lecture)International audienceWe report the draft genome sequence of the flagellated strain CFBP 4884 of Xanthomonas fuscans subsp. fuscans, which was isolatedin an outbreak of common bacterial blight of beans along with non-flagellated strains. Comparative genomics will allowone to decipher the genomic diversity of strains cohabiting in epidemics.</p

    Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads.

    Get PDF
    Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence

    Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    Get PDF
    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar

    A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli

    Get PDF
    In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred

    Whole Body Screening Using High-Temperature Superconducting MR Volume Resonators: Mice Studies

    Get PDF
    High temperature superconducting (HTS) surface resonators have been used as a low loss RF receiver resonator for improving magnetic resonance imaging image quality. However, the application of HTS surface resonators is significantly limited by their filling factor. To maximize the filling factor, it is desirable to have the RF resonator wrapped around the sample so that more nuclear magnetic dipoles can contribute to the signal. In this study, a whole new Bi2Sr2Ca2Cu2O3 (Bi-2223) superconducting saddle resonator (width of 5 cm and length of 8 cm) was designed for the magnetic resonance image of a mouse's whole body in Bruker 3 T MRI system. The experiment was conducted with a professionally-made copper saddle resonator and a Bi-2223 saddle resonator to show the difference. Signal-to-noise ratio (SNR) with the HTS saddle resonator at 77 K was 2.1 and 2 folds higher than that of the copper saddle resonator at 300 K for a phantom and an in-vivo mice whole body imaging. Testing results were in accordance with predicted ones, and the difference between the predicted SNR gains and measured SNR gains were 2.4%∼2.7%. In summary, with this HTS saddle system, a mouse's whole body can be imaged in one scan and could reach a high SNR due to a 2 folds SNR gain over the professionally-made prototype of copper saddle resonator at 300 K. The use of HTS saddle resonator not only improves SNR but also enables a mouse's whole body screen in one scan
    • …
    corecore