430 research outputs found

    REPLY

    Get PDF

    A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus)

    Get PDF
    The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the “r1” mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits

    A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus)

    Get PDF
    The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the “r1” mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits

    Diagnostic accuracy of procalcitonin in critically ill immunocompromised patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recognizing infection is crucial in immunocompromised patients with organ dysfunction. Our objective was to assess the diagnostic accuracy of procalcitonin (PCT) in critically ill immunocompromised patients.</p> <p>Methods</p> <p>This prospective, observational study included patients with suspected sepsis. Patients were classified into one of three diagnostic groups: no infection, bacterial sepsis, and nonbacterial sepsis.</p> <p>Results</p> <p>We included 119 patients with a median age of 54 years (interquartile range [IQR], 42-68 years). The general severity (SAPSII) and organ dysfunction (LOD) scores on day 1 were 45 (35-62.7) and 4 (2-6), respectively, and overall hospital mortality was 32.8%. Causes of immunodepression were hematological disorders (64 patients, 53.8%), HIV infection (31 patients, 26%), and solid cancers (26 patients, 21.8%). Bacterial sepsis was diagnosed in 58 patients and nonbacterial infections in nine patients (7.6%); 52 patients (43.7%) had no infection. PCT concentrations on the first ICU day were higher in the group with bacterial sepsis (4.42 [1.60-22.14] vs. 0.26 [0.09-1.26] ng/ml in patients without bacterial infection, <it>P </it>< 0.0001). PCT concentrations on day 1 that were > 0.5 ng/ml had 100% sensitivity but only 63% specificity for diagnosing bacterial sepsis. The area under the receiver operating characteristic (ROC) curve was 0.851 (0.78-0.92). In multivariate analyses, PCT concentrations > 0.5 ng/ml on day 1 independently predicted bacterial sepsis (odds ratio, 8.6; 95% confidence interval, 2.53-29.3; <it>P </it>= 0.0006). PCT concentrations were not significantly correlated with hospital mortality.</p> <p>Conclusion</p> <p>Despite limited specificity in critically ill immunocompromised patients, PCT concentrations may help to rule out bacterial infection.</p

    Ecto-5′-nucleotidase and intestinal ion secretion by enteropathogenic Escherichia coli

    Get PDF
    Enteropathogenic Escherichia coli (EPEC) triggers a large release of adenosine triphosphate (ATP) from host intestinal cells and the extracellular ATP is broken down to adenosine diphosphate (ADP), AMP, and adenosine. Adenosine is a potent secretagogue in the small and large intestine. We suspected that ecto-5′-nucleotidase (CD73, an intestinal enzyme) was a critical enzyme involved in the conversion of AMP to adenosine and in the pathogenesis of EPEC diarrhea. We developed a nonradioactive method for measuring ecto-5′-nucleotidase in cultured T84 cell monolayers based on the detection of phosphate release from 5′-AMP. EPEC infection triggered a release of ecto-5′-nucleotidase from the cell surface into the supernatant medium. EPEC-induced 5′-nucleotidase release was not correlated with host cell death but instead with activation of phosphatidylinositol-specific phospholipase C (PI-PLC). Ecto-5′-nucleotidase was susceptible to inhibition by zinc acetate and by α,β-methylene-adenosine diphosphate (α,β-methylene-ADP). In the Ussing chamber, these inhibitors could reverse the chloride secretory responses triggered by 5′-AMP. In addition, α,β-methylene-ADP and zinc blocked the ability of 5′-AMP to stimulate EPEC growth under nutrient-limited conditions in vitro. Ecto-5′-nucleotidase appears to be the major enzyme responsible for generation of adenosine from adenine nucleotides in the T84 cell line, and inhibitors of ecto-5′-nucleotidase, such as α,β-methylene-ADP and zinc, might be useful for treatment of the watery diarrhea produced by EPEC infection

    Differentiation-Inducing Factor-1 and -2 Function also as Modulators for Dictyostelium Chemotaxis

    Get PDF
    BackgroundIn the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2) were originally identified as the factors (chlorinated alkylphenones) that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions.Methodology/Principal FindingsTo further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase) and a decrease in the intracellular cGMP concentration ([cGMP]i). DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase) and an increase in [cGMP]i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part.Conclusions/SignificanceOur findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules) for chemotaxis having differentiation-inducing activity

    Dramatic Increases in Obesity and Overweight Prevalence and Body Mass Index Among Ethnic-Immigrant and Social Class Groups in the United States, 1976–2008

    Get PDF
    This study examined trends in US obesity and overweight prevalence and body mass index (BMI) among 30 immigrant groups, stratified by race/ethnicity and length of immigration, and among detailed education, occupation, and income/poverty groups from 1976 to 2008. Using 1976–2008 National Health Interview Surveys, differentials in obesity, overweight, and BMI, based on self-reported height and weight, were analyzed by using disparity indices, logistic, and linear regression. The obesity prevalence for the US population aged ≥18 tripled from 8.7% in 1976 to 27.4% in 2008. Overweight prevalence increased from 36.9% in 1976 to 62.0% in 2008. During 1991–2008, obesity prevalence for US-born adults increased from 13.9 to 28.7%, while prevalence for immigrants increased from 9.5 to 20.7%. While immigrants in each ethnic group and time period had lower obesity and overweight prevalence and BMI than the US-born, immigrants’ risk of obesity and overweight increased with increasing duration of residence. In 2003–2008, obesity prevalence ranged from 2.3% for recent Chinese immigrants to 31–39% for American Indians, US-born blacks, Mexicans, and Puerto Ricans, and long-term Mexican and Puerto Rican immigrants. Between 1976 and 2008, the obesity prevalence more than quadrupled for those with a college education or sales occupation. Although higher prevalence was observed for lower education, income, and occupation levels in each period, socioeconomic gradients in obesity and overweight decreased over time because of more rapid increases in prevalence among higher socioeconomic groups. Continued immigrant and socioeconomic disparities in prevalence will likely have substantial impacts on future obesity trends in the US

    Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock

    Get PDF
    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress

    Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide

    Get PDF
    First-row, earth-abundant metals offer an inexpensive and sustainable alternative to precious-metal catalysts. As such, iron and cobalt catalysts have garnered interest as replacements for alkene and alkyne hydrofunctionalization reactions. However, these have required the use of air- and moisture-sensitive catalysts and reagents, limiting both adoption by the non-expert as well as applicability, particularly in industrial settings. Here, we report a simple method for the use of earth-abundant metal catalysts by general activation with sodium tert-butoxide. Using only robust air- and moisture-stable reagents and pre-catalysts, both known and, significantly, novel catalytic activities have been successfully achieved, covering hydrosilylation, hydroboration, hydrovinylation, hydrogenation and [2π+2π] alkene cycloaddition. This activation method allows for the easy use of earth-abundant metals, including iron, cobalt, nickel and manganese, and represents a generic platform for the discovery and application of non-precious metal catalysis
    corecore